CopywriteR: DNA copy number detection from off-target sequence data

Current methods for detection of copy number variants (CNV) and aberrations (CNA) from targeted sequencing data are based on the depth of coverage of captured exons. Accurate CNA determination is complicated by uneven genomic distribution and non-uniform capture efficiency of targeted exons. Here we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2015-02, Vol.16 (1), p.49, Article 49
Hauptverfasser: Kuilman, Thomas, Velds, Arno, Kemper, Kristel, Ranzani, Marco, Bombardelli, Lorenzo, Hoogstraat, Marlous, Nevedomskaya, Ekaterina, Xu, Guotai, de Ruiter, Julian, Lolkema, Martijn P, Ylstra, Bauke, Jonkers, Jos, Rottenberg, Sven, Wessels, Lodewyk F, Adams, David J, Peeper, Daniel S, Krijgsman, Oscar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current methods for detection of copy number variants (CNV) and aberrations (CNA) from targeted sequencing data are based on the depth of coverage of captured exons. Accurate CNA determination is complicated by uneven genomic distribution and non-uniform capture efficiency of targeted exons. Here we present CopywriteR, which eludes these problems by exploiting 'off-target' sequence reads. CopywriteR allows for extracting uniformly distributed copy number information, can be used without reference, and can be applied to sequencing data obtained from various techniques including chromatin immunoprecipitation and target enrichment on small gene panels. CopywriteR outperforms existing methods and constitutes a widely applicable alternative to available tools.
ISSN:1465-6906
1474-7596
1474-760X
1465-6906
1465-6914
DOI:10.1186/s13059-015-0617-1