The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation

Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2013-05, Vol.153 (5), p.1064-1079
Hauptverfasser: Leprivier, Gabriel, Remke, Marc, Rotblat, Barak, Dubuc, Adrian, Mateo, Abigail-Rachele F., Kool, Marcel, Agnihotri, Sameer, El-Naggar, Amal, Yu, Bin, Prakash Somasekharan, Syam, Faubert, Brandon, Bridon, Gaëlle, Tognon, Cristina E., Mathers, Joan, Thomas, Ryan, Li, Amy, Barokas, Adi, Kwok, Brian, Bowden, Mary, Smith, Stephanie, Wu, Xiaochong, Korshunov, Andrey, Hielscher, Thomas, Northcott, Paul A., Galpin, Jason D., Ahern, Christopher A., Wang, Ye, McCabe, Martin G., Collins, V. Peter, Jones, Russell G., Pollak, Michael, Delattre, Olivier, Gleave, Martin E., Jan, Eric, Pfister, Stefan M., Proud, Christopher G., Derry, W. Brent, Taylor, Michael D., Sorensen, Poul H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1079
container_issue 5
container_start_page 1064
container_title Cell
container_volume 153
creator Leprivier, Gabriel
Remke, Marc
Rotblat, Barak
Dubuc, Adrian
Mateo, Abigail-Rachele F.
Kool, Marcel
Agnihotri, Sameer
El-Naggar, Amal
Yu, Bin
Prakash Somasekharan, Syam
Faubert, Brandon
Bridon, Gaëlle
Tognon, Cristina E.
Mathers, Joan
Thomas, Ryan
Li, Amy
Barokas, Adi
Kwok, Brian
Bowden, Mary
Smith, Stephanie
Wu, Xiaochong
Korshunov, Andrey
Hielscher, Thomas
Northcott, Paul A.
Galpin, Jason D.
Ahern, Christopher A.
Wang, Ye
McCabe, Martin G.
Collins, V. Peter
Jones, Russell G.
Pollak, Michael
Delattre, Olivier
Gleave, Martin E.
Jan, Eric
Pfister, Stefan M.
Proud, Christopher G.
Derry, W. Brent
Taylor, Michael D.
Sorensen, Poul H.
description Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress. [Display omitted] [Display omitted] •eEF2K is required for cell survival under acute nutrient deprivation•AMPK-eEF2K reactivation supports adaptation of transformed cells to nutrient stress•eEF2K expression predicts poor prognosis in aggressive brain tumors•Efk1 (eEF2K ortholog) promotes survival of C. elegans under nutrient deprivation Tumor cells adapt to the stress of nutrient deprivation by increasing the activity of translation elongation factor 2 kinase (eEF2K), which protects cells from apoptosis by inhibiting the elongation step of mRNA translation.
doi_str_mv 10.1016/j.cell.2013.04.055
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4395874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867413005321</els_id><sourcerecordid>2000103770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-5ce90fe1392aed69e746b09ba67258cf9b96fd33d038233519beb5230da72e713</originalsourceid><addsrcrecordid>eNp9UcGO0zAUtBCILYUf4AA-cml4tuMklhASlC4gViBB94gsx3npuqT2YqeV9u9xyLKCCydb7828Gc0Q8pRBwYBVL_eFxWEoODBRQFmAlPfIgoGqVyWr-X2yAFB81VR1eUYepbQHgEZK-ZCccVFDHosF-b69Qoqbc04_OW8S0nXwPcZEv2JyaTTeIh0D_Xwco0M_0nd4Hd3JjC542t7Qt0OwP5zf0W00Pg3zfDMEv_v9fUwe9GZI-OT2XZLL8812_WF18eX9x_Wbi5WV0IwraVFBj0wobrCrFNZl1YJqTVVz2dhetarqOyE6EA0XQjLVYiu5gM7UHGsmluT1fPf62B6ws9lpNIPOVg8m3uhgnP53492V3oWTLoWSTQ5iSV7cHojh5xHTqA8uTekaj-GYNM_ZMRB1DRnKZ6iNIaWI_Z0MAz31ovd6YuqpFw2lzr1k0rO_Dd5R_hSRAc9nQG-CNrvokr78li9UWRiEVJPuqxmBOciTw6iTzZVY7FxEO-ouuP85-AXUgakK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000103770</pqid></control><display><type>article</type><title>The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation</title><source>MEDLINE</source><source>Cell Press Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Leprivier, Gabriel ; Remke, Marc ; Rotblat, Barak ; Dubuc, Adrian ; Mateo, Abigail-Rachele F. ; Kool, Marcel ; Agnihotri, Sameer ; El-Naggar, Amal ; Yu, Bin ; Prakash Somasekharan, Syam ; Faubert, Brandon ; Bridon, Gaëlle ; Tognon, Cristina E. ; Mathers, Joan ; Thomas, Ryan ; Li, Amy ; Barokas, Adi ; Kwok, Brian ; Bowden, Mary ; Smith, Stephanie ; Wu, Xiaochong ; Korshunov, Andrey ; Hielscher, Thomas ; Northcott, Paul A. ; Galpin, Jason D. ; Ahern, Christopher A. ; Wang, Ye ; McCabe, Martin G. ; Collins, V. Peter ; Jones, Russell G. ; Pollak, Michael ; Delattre, Olivier ; Gleave, Martin E. ; Jan, Eric ; Pfister, Stefan M. ; Proud, Christopher G. ; Derry, W. Brent ; Taylor, Michael D. ; Sorensen, Poul H.</creator><creatorcontrib>Leprivier, Gabriel ; Remke, Marc ; Rotblat, Barak ; Dubuc, Adrian ; Mateo, Abigail-Rachele F. ; Kool, Marcel ; Agnihotri, Sameer ; El-Naggar, Amal ; Yu, Bin ; Prakash Somasekharan, Syam ; Faubert, Brandon ; Bridon, Gaëlle ; Tognon, Cristina E. ; Mathers, Joan ; Thomas, Ryan ; Li, Amy ; Barokas, Adi ; Kwok, Brian ; Bowden, Mary ; Smith, Stephanie ; Wu, Xiaochong ; Korshunov, Andrey ; Hielscher, Thomas ; Northcott, Paul A. ; Galpin, Jason D. ; Ahern, Christopher A. ; Wang, Ye ; McCabe, Martin G. ; Collins, V. Peter ; Jones, Russell G. ; Pollak, Michael ; Delattre, Olivier ; Gleave, Martin E. ; Jan, Eric ; Pfister, Stefan M. ; Proud, Christopher G. ; Derry, W. Brent ; Taylor, Michael D. ; Sorensen, Poul H.</creatorcontrib><description>Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress. [Display omitted] [Display omitted] •eEF2K is required for cell survival under acute nutrient deprivation•AMPK-eEF2K reactivation supports adaptation of transformed cells to nutrient stress•eEF2K expression predicts poor prognosis in aggressive brain tumors•Efk1 (eEF2K ortholog) promotes survival of C. elegans under nutrient deprivation Tumor cells adapt to the stress of nutrient deprivation by increasing the activity of translation elongation factor 2 kinase (eEF2K), which protects cells from apoptosis by inhibiting the elongation step of mRNA translation.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2013.04.055</identifier><identifier>PMID: 23706743</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>AMP-activated protein kinase ; AMP-Activated Protein Kinases - metabolism ; Animals ; Brain Neoplasms - physiopathology ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Cell Survival ; Cell Transformation, Neoplastic ; cell viability ; cells ; Elongation Factor 2 Kinase - genetics ; Elongation Factor 2 Kinase - metabolism ; Food Deprivation ; Glioblastoma - physiopathology ; HeLa Cells ; Humans ; low calorie diet ; Mice ; Mice, Nude ; neoplasm cells ; Neoplasm Transplantation ; neoplasms ; Neoplasms - physiopathology ; NIH 3T3 Cells ; Peptide Chain Elongation, Translational ; Peptide Elongation Factor 2 - metabolism ; Signal Transduction ; Transplantation, Heterologous</subject><ispartof>Cell, 2013-05, Vol.153 (5), p.1064-1079</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>2013 Elsevier Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-5ce90fe1392aed69e746b09ba67258cf9b96fd33d038233519beb5230da72e713</citedby><cites>FETCH-LOGICAL-c508t-5ce90fe1392aed69e746b09ba67258cf9b96fd33d038233519beb5230da72e713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867413005321$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23706743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leprivier, Gabriel</creatorcontrib><creatorcontrib>Remke, Marc</creatorcontrib><creatorcontrib>Rotblat, Barak</creatorcontrib><creatorcontrib>Dubuc, Adrian</creatorcontrib><creatorcontrib>Mateo, Abigail-Rachele F.</creatorcontrib><creatorcontrib>Kool, Marcel</creatorcontrib><creatorcontrib>Agnihotri, Sameer</creatorcontrib><creatorcontrib>El-Naggar, Amal</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Prakash Somasekharan, Syam</creatorcontrib><creatorcontrib>Faubert, Brandon</creatorcontrib><creatorcontrib>Bridon, Gaëlle</creatorcontrib><creatorcontrib>Tognon, Cristina E.</creatorcontrib><creatorcontrib>Mathers, Joan</creatorcontrib><creatorcontrib>Thomas, Ryan</creatorcontrib><creatorcontrib>Li, Amy</creatorcontrib><creatorcontrib>Barokas, Adi</creatorcontrib><creatorcontrib>Kwok, Brian</creatorcontrib><creatorcontrib>Bowden, Mary</creatorcontrib><creatorcontrib>Smith, Stephanie</creatorcontrib><creatorcontrib>Wu, Xiaochong</creatorcontrib><creatorcontrib>Korshunov, Andrey</creatorcontrib><creatorcontrib>Hielscher, Thomas</creatorcontrib><creatorcontrib>Northcott, Paul A.</creatorcontrib><creatorcontrib>Galpin, Jason D.</creatorcontrib><creatorcontrib>Ahern, Christopher A.</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>McCabe, Martin G.</creatorcontrib><creatorcontrib>Collins, V. Peter</creatorcontrib><creatorcontrib>Jones, Russell G.</creatorcontrib><creatorcontrib>Pollak, Michael</creatorcontrib><creatorcontrib>Delattre, Olivier</creatorcontrib><creatorcontrib>Gleave, Martin E.</creatorcontrib><creatorcontrib>Jan, Eric</creatorcontrib><creatorcontrib>Pfister, Stefan M.</creatorcontrib><creatorcontrib>Proud, Christopher G.</creatorcontrib><creatorcontrib>Derry, W. Brent</creatorcontrib><creatorcontrib>Taylor, Michael D.</creatorcontrib><creatorcontrib>Sorensen, Poul H.</creatorcontrib><title>The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation</title><title>Cell</title><addtitle>Cell</addtitle><description>Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress. [Display omitted] [Display omitted] •eEF2K is required for cell survival under acute nutrient deprivation•AMPK-eEF2K reactivation supports adaptation of transformed cells to nutrient stress•eEF2K expression predicts poor prognosis in aggressive brain tumors•Efk1 (eEF2K ortholog) promotes survival of C. elegans under nutrient deprivation Tumor cells adapt to the stress of nutrient deprivation by increasing the activity of translation elongation factor 2 kinase (eEF2K), which protects cells from apoptosis by inhibiting the elongation step of mRNA translation.</description><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Brain Neoplasms - physiopathology</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Cell Survival</subject><subject>Cell Transformation, Neoplastic</subject><subject>cell viability</subject><subject>cells</subject><subject>Elongation Factor 2 Kinase - genetics</subject><subject>Elongation Factor 2 Kinase - metabolism</subject><subject>Food Deprivation</subject><subject>Glioblastoma - physiopathology</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>low calorie diet</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>neoplasm cells</subject><subject>Neoplasm Transplantation</subject><subject>neoplasms</subject><subject>Neoplasms - physiopathology</subject><subject>NIH 3T3 Cells</subject><subject>Peptide Chain Elongation, Translational</subject><subject>Peptide Elongation Factor 2 - metabolism</subject><subject>Signal Transduction</subject><subject>Transplantation, Heterologous</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcGO0zAUtBCILYUf4AA-cml4tuMklhASlC4gViBB94gsx3npuqT2YqeV9u9xyLKCCydb7828Gc0Q8pRBwYBVL_eFxWEoODBRQFmAlPfIgoGqVyWr-X2yAFB81VR1eUYepbQHgEZK-ZCccVFDHosF-b69Qoqbc04_OW8S0nXwPcZEv2JyaTTeIh0D_Xwco0M_0nd4Hd3JjC542t7Qt0OwP5zf0W00Pg3zfDMEv_v9fUwe9GZI-OT2XZLL8812_WF18eX9x_Wbi5WV0IwraVFBj0wobrCrFNZl1YJqTVVz2dhetarqOyE6EA0XQjLVYiu5gM7UHGsmluT1fPf62B6ws9lpNIPOVg8m3uhgnP53492V3oWTLoWSTQ5iSV7cHojh5xHTqA8uTekaj-GYNM_ZMRB1DRnKZ6iNIaWI_Z0MAz31ovd6YuqpFw2lzr1k0rO_Dd5R_hSRAc9nQG-CNrvokr78li9UWRiEVJPuqxmBOciTw6iTzZVY7FxEO-ouuP85-AXUgakK</recordid><startdate>20130523</startdate><enddate>20130523</enddate><creator>Leprivier, Gabriel</creator><creator>Remke, Marc</creator><creator>Rotblat, Barak</creator><creator>Dubuc, Adrian</creator><creator>Mateo, Abigail-Rachele F.</creator><creator>Kool, Marcel</creator><creator>Agnihotri, Sameer</creator><creator>El-Naggar, Amal</creator><creator>Yu, Bin</creator><creator>Prakash Somasekharan, Syam</creator><creator>Faubert, Brandon</creator><creator>Bridon, Gaëlle</creator><creator>Tognon, Cristina E.</creator><creator>Mathers, Joan</creator><creator>Thomas, Ryan</creator><creator>Li, Amy</creator><creator>Barokas, Adi</creator><creator>Kwok, Brian</creator><creator>Bowden, Mary</creator><creator>Smith, Stephanie</creator><creator>Wu, Xiaochong</creator><creator>Korshunov, Andrey</creator><creator>Hielscher, Thomas</creator><creator>Northcott, Paul A.</creator><creator>Galpin, Jason D.</creator><creator>Ahern, Christopher A.</creator><creator>Wang, Ye</creator><creator>McCabe, Martin G.</creator><creator>Collins, V. Peter</creator><creator>Jones, Russell G.</creator><creator>Pollak, Michael</creator><creator>Delattre, Olivier</creator><creator>Gleave, Martin E.</creator><creator>Jan, Eric</creator><creator>Pfister, Stefan M.</creator><creator>Proud, Christopher G.</creator><creator>Derry, W. Brent</creator><creator>Taylor, Michael D.</creator><creator>Sorensen, Poul H.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130523</creationdate><title>The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation</title><author>Leprivier, Gabriel ; Remke, Marc ; Rotblat, Barak ; Dubuc, Adrian ; Mateo, Abigail-Rachele F. ; Kool, Marcel ; Agnihotri, Sameer ; El-Naggar, Amal ; Yu, Bin ; Prakash Somasekharan, Syam ; Faubert, Brandon ; Bridon, Gaëlle ; Tognon, Cristina E. ; Mathers, Joan ; Thomas, Ryan ; Li, Amy ; Barokas, Adi ; Kwok, Brian ; Bowden, Mary ; Smith, Stephanie ; Wu, Xiaochong ; Korshunov, Andrey ; Hielscher, Thomas ; Northcott, Paul A. ; Galpin, Jason D. ; Ahern, Christopher A. ; Wang, Ye ; McCabe, Martin G. ; Collins, V. Peter ; Jones, Russell G. ; Pollak, Michael ; Delattre, Olivier ; Gleave, Martin E. ; Jan, Eric ; Pfister, Stefan M. ; Proud, Christopher G. ; Derry, W. Brent ; Taylor, Michael D. ; Sorensen, Poul H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-5ce90fe1392aed69e746b09ba67258cf9b96fd33d038233519beb5230da72e713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Brain Neoplasms - physiopathology</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Cell Survival</topic><topic>Cell Transformation, Neoplastic</topic><topic>cell viability</topic><topic>cells</topic><topic>Elongation Factor 2 Kinase - genetics</topic><topic>Elongation Factor 2 Kinase - metabolism</topic><topic>Food Deprivation</topic><topic>Glioblastoma - physiopathology</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>low calorie diet</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>neoplasm cells</topic><topic>Neoplasm Transplantation</topic><topic>neoplasms</topic><topic>Neoplasms - physiopathology</topic><topic>NIH 3T3 Cells</topic><topic>Peptide Chain Elongation, Translational</topic><topic>Peptide Elongation Factor 2 - metabolism</topic><topic>Signal Transduction</topic><topic>Transplantation, Heterologous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leprivier, Gabriel</creatorcontrib><creatorcontrib>Remke, Marc</creatorcontrib><creatorcontrib>Rotblat, Barak</creatorcontrib><creatorcontrib>Dubuc, Adrian</creatorcontrib><creatorcontrib>Mateo, Abigail-Rachele F.</creatorcontrib><creatorcontrib>Kool, Marcel</creatorcontrib><creatorcontrib>Agnihotri, Sameer</creatorcontrib><creatorcontrib>El-Naggar, Amal</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Prakash Somasekharan, Syam</creatorcontrib><creatorcontrib>Faubert, Brandon</creatorcontrib><creatorcontrib>Bridon, Gaëlle</creatorcontrib><creatorcontrib>Tognon, Cristina E.</creatorcontrib><creatorcontrib>Mathers, Joan</creatorcontrib><creatorcontrib>Thomas, Ryan</creatorcontrib><creatorcontrib>Li, Amy</creatorcontrib><creatorcontrib>Barokas, Adi</creatorcontrib><creatorcontrib>Kwok, Brian</creatorcontrib><creatorcontrib>Bowden, Mary</creatorcontrib><creatorcontrib>Smith, Stephanie</creatorcontrib><creatorcontrib>Wu, Xiaochong</creatorcontrib><creatorcontrib>Korshunov, Andrey</creatorcontrib><creatorcontrib>Hielscher, Thomas</creatorcontrib><creatorcontrib>Northcott, Paul A.</creatorcontrib><creatorcontrib>Galpin, Jason D.</creatorcontrib><creatorcontrib>Ahern, Christopher A.</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>McCabe, Martin G.</creatorcontrib><creatorcontrib>Collins, V. Peter</creatorcontrib><creatorcontrib>Jones, Russell G.</creatorcontrib><creatorcontrib>Pollak, Michael</creatorcontrib><creatorcontrib>Delattre, Olivier</creatorcontrib><creatorcontrib>Gleave, Martin E.</creatorcontrib><creatorcontrib>Jan, Eric</creatorcontrib><creatorcontrib>Pfister, Stefan M.</creatorcontrib><creatorcontrib>Proud, Christopher G.</creatorcontrib><creatorcontrib>Derry, W. Brent</creatorcontrib><creatorcontrib>Taylor, Michael D.</creatorcontrib><creatorcontrib>Sorensen, Poul H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leprivier, Gabriel</au><au>Remke, Marc</au><au>Rotblat, Barak</au><au>Dubuc, Adrian</au><au>Mateo, Abigail-Rachele F.</au><au>Kool, Marcel</au><au>Agnihotri, Sameer</au><au>El-Naggar, Amal</au><au>Yu, Bin</au><au>Prakash Somasekharan, Syam</au><au>Faubert, Brandon</au><au>Bridon, Gaëlle</au><au>Tognon, Cristina E.</au><au>Mathers, Joan</au><au>Thomas, Ryan</au><au>Li, Amy</au><au>Barokas, Adi</au><au>Kwok, Brian</au><au>Bowden, Mary</au><au>Smith, Stephanie</au><au>Wu, Xiaochong</au><au>Korshunov, Andrey</au><au>Hielscher, Thomas</au><au>Northcott, Paul A.</au><au>Galpin, Jason D.</au><au>Ahern, Christopher A.</au><au>Wang, Ye</au><au>McCabe, Martin G.</au><au>Collins, V. Peter</au><au>Jones, Russell G.</au><au>Pollak, Michael</au><au>Delattre, Olivier</au><au>Gleave, Martin E.</au><au>Jan, Eric</au><au>Pfister, Stefan M.</au><au>Proud, Christopher G.</au><au>Derry, W. Brent</au><au>Taylor, Michael D.</au><au>Sorensen, Poul H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2013-05-23</date><risdate>2013</risdate><volume>153</volume><issue>5</issue><spage>1064</spage><epage>1079</epage><pages>1064-1079</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress. [Display omitted] [Display omitted] •eEF2K is required for cell survival under acute nutrient deprivation•AMPK-eEF2K reactivation supports adaptation of transformed cells to nutrient stress•eEF2K expression predicts poor prognosis in aggressive brain tumors•Efk1 (eEF2K ortholog) promotes survival of C. elegans under nutrient deprivation Tumor cells adapt to the stress of nutrient deprivation by increasing the activity of translation elongation factor 2 kinase (eEF2K), which protects cells from apoptosis by inhibiting the elongation step of mRNA translation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23706743</pmid><doi>10.1016/j.cell.2013.04.055</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2013-05, Vol.153 (5), p.1064-1079
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4395874
source MEDLINE; Cell Press Archives; Elsevier ScienceDirect Journals; EZB Electronic Journals Library
subjects AMP-activated protein kinase
AMP-Activated Protein Kinases - metabolism
Animals
Brain Neoplasms - physiopathology
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Cell Survival
Cell Transformation, Neoplastic
cell viability
cells
Elongation Factor 2 Kinase - genetics
Elongation Factor 2 Kinase - metabolism
Food Deprivation
Glioblastoma - physiopathology
HeLa Cells
Humans
low calorie diet
Mice
Mice, Nude
neoplasm cells
Neoplasm Transplantation
neoplasms
Neoplasms - physiopathology
NIH 3T3 Cells
Peptide Chain Elongation, Translational
Peptide Elongation Factor 2 - metabolism
Signal Transduction
Transplantation, Heterologous
title The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20eEF2%20Kinase%20Confers%20Resistance%20to%20Nutrient%20Deprivation%20by%20Blocking%20Translation%20Elongation&rft.jtitle=Cell&rft.au=Leprivier,%20Gabriel&rft.date=2013-05-23&rft.volume=153&rft.issue=5&rft.spage=1064&rft.epage=1079&rft.pages=1064-1079&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2013.04.055&rft_dat=%3Cproquest_pubme%3E2000103770%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000103770&rft_id=info:pmid/23706743&rft_els_id=S0092867413005321&rfr_iscdi=true