The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation
Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pa...
Gespeichert in:
Veröffentlicht in: | Cell 2013-05, Vol.153 (5), p.1064-1079 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1079 |
---|---|
container_issue | 5 |
container_start_page | 1064 |
container_title | Cell |
container_volume | 153 |
creator | Leprivier, Gabriel Remke, Marc Rotblat, Barak Dubuc, Adrian Mateo, Abigail-Rachele F. Kool, Marcel Agnihotri, Sameer El-Naggar, Amal Yu, Bin Prakash Somasekharan, Syam Faubert, Brandon Bridon, Gaëlle Tognon, Cristina E. Mathers, Joan Thomas, Ryan Li, Amy Barokas, Adi Kwok, Brian Bowden, Mary Smith, Stephanie Wu, Xiaochong Korshunov, Andrey Hielscher, Thomas Northcott, Paul A. Galpin, Jason D. Ahern, Christopher A. Wang, Ye McCabe, Martin G. Collins, V. Peter Jones, Russell G. Pollak, Michael Delattre, Olivier Gleave, Martin E. Jan, Eric Pfister, Stefan M. Proud, Christopher G. Derry, W. Brent Taylor, Michael D. Sorensen, Poul H. |
description | Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress.
[Display omitted]
[Display omitted]
•eEF2K is required for cell survival under acute nutrient deprivation•AMPK-eEF2K reactivation supports adaptation of transformed cells to nutrient stress•eEF2K expression predicts poor prognosis in aggressive brain tumors•Efk1 (eEF2K ortholog) promotes survival of C. elegans under nutrient deprivation
Tumor cells adapt to the stress of nutrient deprivation by increasing the activity of translation elongation factor 2 kinase (eEF2K), which protects cells from apoptosis by inhibiting the elongation step of mRNA translation. |
doi_str_mv | 10.1016/j.cell.2013.04.055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4395874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867413005321</els_id><sourcerecordid>2000103770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-5ce90fe1392aed69e746b09ba67258cf9b96fd33d038233519beb5230da72e713</originalsourceid><addsrcrecordid>eNp9UcGO0zAUtBCILYUf4AA-cml4tuMklhASlC4gViBB94gsx3npuqT2YqeV9u9xyLKCCydb7828Gc0Q8pRBwYBVL_eFxWEoODBRQFmAlPfIgoGqVyWr-X2yAFB81VR1eUYepbQHgEZK-ZCccVFDHosF-b69Qoqbc04_OW8S0nXwPcZEv2JyaTTeIh0D_Xwco0M_0nd4Hd3JjC542t7Qt0OwP5zf0W00Pg3zfDMEv_v9fUwe9GZI-OT2XZLL8812_WF18eX9x_Wbi5WV0IwraVFBj0wobrCrFNZl1YJqTVVz2dhetarqOyE6EA0XQjLVYiu5gM7UHGsmluT1fPf62B6ws9lpNIPOVg8m3uhgnP53492V3oWTLoWSTQ5iSV7cHojh5xHTqA8uTekaj-GYNM_ZMRB1DRnKZ6iNIaWI_Z0MAz31ovd6YuqpFw2lzr1k0rO_Dd5R_hSRAc9nQG-CNrvokr78li9UWRiEVJPuqxmBOciTw6iTzZVY7FxEO-ouuP85-AXUgakK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000103770</pqid></control><display><type>article</type><title>The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation</title><source>MEDLINE</source><source>Cell Press Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Leprivier, Gabriel ; Remke, Marc ; Rotblat, Barak ; Dubuc, Adrian ; Mateo, Abigail-Rachele F. ; Kool, Marcel ; Agnihotri, Sameer ; El-Naggar, Amal ; Yu, Bin ; Prakash Somasekharan, Syam ; Faubert, Brandon ; Bridon, Gaëlle ; Tognon, Cristina E. ; Mathers, Joan ; Thomas, Ryan ; Li, Amy ; Barokas, Adi ; Kwok, Brian ; Bowden, Mary ; Smith, Stephanie ; Wu, Xiaochong ; Korshunov, Andrey ; Hielscher, Thomas ; Northcott, Paul A. ; Galpin, Jason D. ; Ahern, Christopher A. ; Wang, Ye ; McCabe, Martin G. ; Collins, V. Peter ; Jones, Russell G. ; Pollak, Michael ; Delattre, Olivier ; Gleave, Martin E. ; Jan, Eric ; Pfister, Stefan M. ; Proud, Christopher G. ; Derry, W. Brent ; Taylor, Michael D. ; Sorensen, Poul H.</creator><creatorcontrib>Leprivier, Gabriel ; Remke, Marc ; Rotblat, Barak ; Dubuc, Adrian ; Mateo, Abigail-Rachele F. ; Kool, Marcel ; Agnihotri, Sameer ; El-Naggar, Amal ; Yu, Bin ; Prakash Somasekharan, Syam ; Faubert, Brandon ; Bridon, Gaëlle ; Tognon, Cristina E. ; Mathers, Joan ; Thomas, Ryan ; Li, Amy ; Barokas, Adi ; Kwok, Brian ; Bowden, Mary ; Smith, Stephanie ; Wu, Xiaochong ; Korshunov, Andrey ; Hielscher, Thomas ; Northcott, Paul A. ; Galpin, Jason D. ; Ahern, Christopher A. ; Wang, Ye ; McCabe, Martin G. ; Collins, V. Peter ; Jones, Russell G. ; Pollak, Michael ; Delattre, Olivier ; Gleave, Martin E. ; Jan, Eric ; Pfister, Stefan M. ; Proud, Christopher G. ; Derry, W. Brent ; Taylor, Michael D. ; Sorensen, Poul H.</creatorcontrib><description>Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress.
[Display omitted]
[Display omitted]
•eEF2K is required for cell survival under acute nutrient deprivation•AMPK-eEF2K reactivation supports adaptation of transformed cells to nutrient stress•eEF2K expression predicts poor prognosis in aggressive brain tumors•Efk1 (eEF2K ortholog) promotes survival of C. elegans under nutrient deprivation
Tumor cells adapt to the stress of nutrient deprivation by increasing the activity of translation elongation factor 2 kinase (eEF2K), which protects cells from apoptosis by inhibiting the elongation step of mRNA translation.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2013.04.055</identifier><identifier>PMID: 23706743</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>AMP-activated protein kinase ; AMP-Activated Protein Kinases - metabolism ; Animals ; Brain Neoplasms - physiopathology ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Cell Survival ; Cell Transformation, Neoplastic ; cell viability ; cells ; Elongation Factor 2 Kinase - genetics ; Elongation Factor 2 Kinase - metabolism ; Food Deprivation ; Glioblastoma - physiopathology ; HeLa Cells ; Humans ; low calorie diet ; Mice ; Mice, Nude ; neoplasm cells ; Neoplasm Transplantation ; neoplasms ; Neoplasms - physiopathology ; NIH 3T3 Cells ; Peptide Chain Elongation, Translational ; Peptide Elongation Factor 2 - metabolism ; Signal Transduction ; Transplantation, Heterologous</subject><ispartof>Cell, 2013-05, Vol.153 (5), p.1064-1079</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>2013 Elsevier Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-5ce90fe1392aed69e746b09ba67258cf9b96fd33d038233519beb5230da72e713</citedby><cites>FETCH-LOGICAL-c508t-5ce90fe1392aed69e746b09ba67258cf9b96fd33d038233519beb5230da72e713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867413005321$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23706743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leprivier, Gabriel</creatorcontrib><creatorcontrib>Remke, Marc</creatorcontrib><creatorcontrib>Rotblat, Barak</creatorcontrib><creatorcontrib>Dubuc, Adrian</creatorcontrib><creatorcontrib>Mateo, Abigail-Rachele F.</creatorcontrib><creatorcontrib>Kool, Marcel</creatorcontrib><creatorcontrib>Agnihotri, Sameer</creatorcontrib><creatorcontrib>El-Naggar, Amal</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Prakash Somasekharan, Syam</creatorcontrib><creatorcontrib>Faubert, Brandon</creatorcontrib><creatorcontrib>Bridon, Gaëlle</creatorcontrib><creatorcontrib>Tognon, Cristina E.</creatorcontrib><creatorcontrib>Mathers, Joan</creatorcontrib><creatorcontrib>Thomas, Ryan</creatorcontrib><creatorcontrib>Li, Amy</creatorcontrib><creatorcontrib>Barokas, Adi</creatorcontrib><creatorcontrib>Kwok, Brian</creatorcontrib><creatorcontrib>Bowden, Mary</creatorcontrib><creatorcontrib>Smith, Stephanie</creatorcontrib><creatorcontrib>Wu, Xiaochong</creatorcontrib><creatorcontrib>Korshunov, Andrey</creatorcontrib><creatorcontrib>Hielscher, Thomas</creatorcontrib><creatorcontrib>Northcott, Paul A.</creatorcontrib><creatorcontrib>Galpin, Jason D.</creatorcontrib><creatorcontrib>Ahern, Christopher A.</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>McCabe, Martin G.</creatorcontrib><creatorcontrib>Collins, V. Peter</creatorcontrib><creatorcontrib>Jones, Russell G.</creatorcontrib><creatorcontrib>Pollak, Michael</creatorcontrib><creatorcontrib>Delattre, Olivier</creatorcontrib><creatorcontrib>Gleave, Martin E.</creatorcontrib><creatorcontrib>Jan, Eric</creatorcontrib><creatorcontrib>Pfister, Stefan M.</creatorcontrib><creatorcontrib>Proud, Christopher G.</creatorcontrib><creatorcontrib>Derry, W. Brent</creatorcontrib><creatorcontrib>Taylor, Michael D.</creatorcontrib><creatorcontrib>Sorensen, Poul H.</creatorcontrib><title>The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation</title><title>Cell</title><addtitle>Cell</addtitle><description>Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress.
[Display omitted]
[Display omitted]
•eEF2K is required for cell survival under acute nutrient deprivation•AMPK-eEF2K reactivation supports adaptation of transformed cells to nutrient stress•eEF2K expression predicts poor prognosis in aggressive brain tumors•Efk1 (eEF2K ortholog) promotes survival of C. elegans under nutrient deprivation
Tumor cells adapt to the stress of nutrient deprivation by increasing the activity of translation elongation factor 2 kinase (eEF2K), which protects cells from apoptosis by inhibiting the elongation step of mRNA translation.</description><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Brain Neoplasms - physiopathology</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Cell Survival</subject><subject>Cell Transformation, Neoplastic</subject><subject>cell viability</subject><subject>cells</subject><subject>Elongation Factor 2 Kinase - genetics</subject><subject>Elongation Factor 2 Kinase - metabolism</subject><subject>Food Deprivation</subject><subject>Glioblastoma - physiopathology</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>low calorie diet</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>neoplasm cells</subject><subject>Neoplasm Transplantation</subject><subject>neoplasms</subject><subject>Neoplasms - physiopathology</subject><subject>NIH 3T3 Cells</subject><subject>Peptide Chain Elongation, Translational</subject><subject>Peptide Elongation Factor 2 - metabolism</subject><subject>Signal Transduction</subject><subject>Transplantation, Heterologous</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcGO0zAUtBCILYUf4AA-cml4tuMklhASlC4gViBB94gsx3npuqT2YqeV9u9xyLKCCydb7828Gc0Q8pRBwYBVL_eFxWEoODBRQFmAlPfIgoGqVyWr-X2yAFB81VR1eUYepbQHgEZK-ZCccVFDHosF-b69Qoqbc04_OW8S0nXwPcZEv2JyaTTeIh0D_Xwco0M_0nd4Hd3JjC542t7Qt0OwP5zf0W00Pg3zfDMEv_v9fUwe9GZI-OT2XZLL8812_WF18eX9x_Wbi5WV0IwraVFBj0wobrCrFNZl1YJqTVVz2dhetarqOyE6EA0XQjLVYiu5gM7UHGsmluT1fPf62B6ws9lpNIPOVg8m3uhgnP53492V3oWTLoWSTQ5iSV7cHojh5xHTqA8uTekaj-GYNM_ZMRB1DRnKZ6iNIaWI_Z0MAz31ovd6YuqpFw2lzr1k0rO_Dd5R_hSRAc9nQG-CNrvokr78li9UWRiEVJPuqxmBOciTw6iTzZVY7FxEO-ouuP85-AXUgakK</recordid><startdate>20130523</startdate><enddate>20130523</enddate><creator>Leprivier, Gabriel</creator><creator>Remke, Marc</creator><creator>Rotblat, Barak</creator><creator>Dubuc, Adrian</creator><creator>Mateo, Abigail-Rachele F.</creator><creator>Kool, Marcel</creator><creator>Agnihotri, Sameer</creator><creator>El-Naggar, Amal</creator><creator>Yu, Bin</creator><creator>Prakash Somasekharan, Syam</creator><creator>Faubert, Brandon</creator><creator>Bridon, Gaëlle</creator><creator>Tognon, Cristina E.</creator><creator>Mathers, Joan</creator><creator>Thomas, Ryan</creator><creator>Li, Amy</creator><creator>Barokas, Adi</creator><creator>Kwok, Brian</creator><creator>Bowden, Mary</creator><creator>Smith, Stephanie</creator><creator>Wu, Xiaochong</creator><creator>Korshunov, Andrey</creator><creator>Hielscher, Thomas</creator><creator>Northcott, Paul A.</creator><creator>Galpin, Jason D.</creator><creator>Ahern, Christopher A.</creator><creator>Wang, Ye</creator><creator>McCabe, Martin G.</creator><creator>Collins, V. Peter</creator><creator>Jones, Russell G.</creator><creator>Pollak, Michael</creator><creator>Delattre, Olivier</creator><creator>Gleave, Martin E.</creator><creator>Jan, Eric</creator><creator>Pfister, Stefan M.</creator><creator>Proud, Christopher G.</creator><creator>Derry, W. Brent</creator><creator>Taylor, Michael D.</creator><creator>Sorensen, Poul H.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130523</creationdate><title>The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation</title><author>Leprivier, Gabriel ; Remke, Marc ; Rotblat, Barak ; Dubuc, Adrian ; Mateo, Abigail-Rachele F. ; Kool, Marcel ; Agnihotri, Sameer ; El-Naggar, Amal ; Yu, Bin ; Prakash Somasekharan, Syam ; Faubert, Brandon ; Bridon, Gaëlle ; Tognon, Cristina E. ; Mathers, Joan ; Thomas, Ryan ; Li, Amy ; Barokas, Adi ; Kwok, Brian ; Bowden, Mary ; Smith, Stephanie ; Wu, Xiaochong ; Korshunov, Andrey ; Hielscher, Thomas ; Northcott, Paul A. ; Galpin, Jason D. ; Ahern, Christopher A. ; Wang, Ye ; McCabe, Martin G. ; Collins, V. Peter ; Jones, Russell G. ; Pollak, Michael ; Delattre, Olivier ; Gleave, Martin E. ; Jan, Eric ; Pfister, Stefan M. ; Proud, Christopher G. ; Derry, W. Brent ; Taylor, Michael D. ; Sorensen, Poul H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-5ce90fe1392aed69e746b09ba67258cf9b96fd33d038233519beb5230da72e713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Brain Neoplasms - physiopathology</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Cell Survival</topic><topic>Cell Transformation, Neoplastic</topic><topic>cell viability</topic><topic>cells</topic><topic>Elongation Factor 2 Kinase - genetics</topic><topic>Elongation Factor 2 Kinase - metabolism</topic><topic>Food Deprivation</topic><topic>Glioblastoma - physiopathology</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>low calorie diet</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>neoplasm cells</topic><topic>Neoplasm Transplantation</topic><topic>neoplasms</topic><topic>Neoplasms - physiopathology</topic><topic>NIH 3T3 Cells</topic><topic>Peptide Chain Elongation, Translational</topic><topic>Peptide Elongation Factor 2 - metabolism</topic><topic>Signal Transduction</topic><topic>Transplantation, Heterologous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leprivier, Gabriel</creatorcontrib><creatorcontrib>Remke, Marc</creatorcontrib><creatorcontrib>Rotblat, Barak</creatorcontrib><creatorcontrib>Dubuc, Adrian</creatorcontrib><creatorcontrib>Mateo, Abigail-Rachele F.</creatorcontrib><creatorcontrib>Kool, Marcel</creatorcontrib><creatorcontrib>Agnihotri, Sameer</creatorcontrib><creatorcontrib>El-Naggar, Amal</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Prakash Somasekharan, Syam</creatorcontrib><creatorcontrib>Faubert, Brandon</creatorcontrib><creatorcontrib>Bridon, Gaëlle</creatorcontrib><creatorcontrib>Tognon, Cristina E.</creatorcontrib><creatorcontrib>Mathers, Joan</creatorcontrib><creatorcontrib>Thomas, Ryan</creatorcontrib><creatorcontrib>Li, Amy</creatorcontrib><creatorcontrib>Barokas, Adi</creatorcontrib><creatorcontrib>Kwok, Brian</creatorcontrib><creatorcontrib>Bowden, Mary</creatorcontrib><creatorcontrib>Smith, Stephanie</creatorcontrib><creatorcontrib>Wu, Xiaochong</creatorcontrib><creatorcontrib>Korshunov, Andrey</creatorcontrib><creatorcontrib>Hielscher, Thomas</creatorcontrib><creatorcontrib>Northcott, Paul A.</creatorcontrib><creatorcontrib>Galpin, Jason D.</creatorcontrib><creatorcontrib>Ahern, Christopher A.</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>McCabe, Martin G.</creatorcontrib><creatorcontrib>Collins, V. Peter</creatorcontrib><creatorcontrib>Jones, Russell G.</creatorcontrib><creatorcontrib>Pollak, Michael</creatorcontrib><creatorcontrib>Delattre, Olivier</creatorcontrib><creatorcontrib>Gleave, Martin E.</creatorcontrib><creatorcontrib>Jan, Eric</creatorcontrib><creatorcontrib>Pfister, Stefan M.</creatorcontrib><creatorcontrib>Proud, Christopher G.</creatorcontrib><creatorcontrib>Derry, W. Brent</creatorcontrib><creatorcontrib>Taylor, Michael D.</creatorcontrib><creatorcontrib>Sorensen, Poul H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leprivier, Gabriel</au><au>Remke, Marc</au><au>Rotblat, Barak</au><au>Dubuc, Adrian</au><au>Mateo, Abigail-Rachele F.</au><au>Kool, Marcel</au><au>Agnihotri, Sameer</au><au>El-Naggar, Amal</au><au>Yu, Bin</au><au>Prakash Somasekharan, Syam</au><au>Faubert, Brandon</au><au>Bridon, Gaëlle</au><au>Tognon, Cristina E.</au><au>Mathers, Joan</au><au>Thomas, Ryan</au><au>Li, Amy</au><au>Barokas, Adi</au><au>Kwok, Brian</au><au>Bowden, Mary</au><au>Smith, Stephanie</au><au>Wu, Xiaochong</au><au>Korshunov, Andrey</au><au>Hielscher, Thomas</au><au>Northcott, Paul A.</au><au>Galpin, Jason D.</au><au>Ahern, Christopher A.</au><au>Wang, Ye</au><au>McCabe, Martin G.</au><au>Collins, V. Peter</au><au>Jones, Russell G.</au><au>Pollak, Michael</au><au>Delattre, Olivier</au><au>Gleave, Martin E.</au><au>Jan, Eric</au><au>Pfister, Stefan M.</au><au>Proud, Christopher G.</au><au>Derry, W. Brent</au><au>Taylor, Michael D.</au><au>Sorensen, Poul H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2013-05-23</date><risdate>2013</risdate><volume>153</volume><issue>5</issue><spage>1064</spage><epage>1079</epage><pages>1064-1079</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress.
[Display omitted]
[Display omitted]
•eEF2K is required for cell survival under acute nutrient deprivation•AMPK-eEF2K reactivation supports adaptation of transformed cells to nutrient stress•eEF2K expression predicts poor prognosis in aggressive brain tumors•Efk1 (eEF2K ortholog) promotes survival of C. elegans under nutrient deprivation
Tumor cells adapt to the stress of nutrient deprivation by increasing the activity of translation elongation factor 2 kinase (eEF2K), which protects cells from apoptosis by inhibiting the elongation step of mRNA translation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23706743</pmid><doi>10.1016/j.cell.2013.04.055</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2013-05, Vol.153 (5), p.1064-1079 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4395874 |
source | MEDLINE; Cell Press Archives; Elsevier ScienceDirect Journals; EZB Electronic Journals Library |
subjects | AMP-activated protein kinase AMP-Activated Protein Kinases - metabolism Animals Brain Neoplasms - physiopathology Caenorhabditis elegans - genetics Caenorhabditis elegans - metabolism Cell Survival Cell Transformation, Neoplastic cell viability cells Elongation Factor 2 Kinase - genetics Elongation Factor 2 Kinase - metabolism Food Deprivation Glioblastoma - physiopathology HeLa Cells Humans low calorie diet Mice Mice, Nude neoplasm cells Neoplasm Transplantation neoplasms Neoplasms - physiopathology NIH 3T3 Cells Peptide Chain Elongation, Translational Peptide Elongation Factor 2 - metabolism Signal Transduction Transplantation, Heterologous |
title | The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20eEF2%20Kinase%20Confers%20Resistance%20to%20Nutrient%20Deprivation%20by%20Blocking%20Translation%20Elongation&rft.jtitle=Cell&rft.au=Leprivier,%20Gabriel&rft.date=2013-05-23&rft.volume=153&rft.issue=5&rft.spage=1064&rft.epage=1079&rft.pages=1064-1079&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2013.04.055&rft_dat=%3Cproquest_pubme%3E2000103770%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000103770&rft_id=info:pmid/23706743&rft_els_id=S0092867413005321&rfr_iscdi=true |