SIRT3 Mediates Multi-Tissue Coupling for Metabolic Fuel Switching

SIRT3 is a member of the Sirtuin family of NAD+-dependent deacylases and plays a critical role in metabolic regulation. Organism-wide SIRT3 loss manifests in metabolic alterations; however, the coordinating role of SIRT3 among metabolically distinct tissues is unknown. Using multi-tissue quantitativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell metabolism 2015-04, Vol.21 (4), p.637-646
Hauptverfasser: Dittenhafer-Reed, Kristin E., Richards, Alicia L., Fan, Jing, Smallegan, Michael J., Fotuhi Siahpirani, Alireza, Kemmerer, Zachary A., Prolla, Tomas A., Roy, Sushmita, Coon, Joshua J., Denu, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 646
container_issue 4
container_start_page 637
container_title Cell metabolism
container_volume 21
creator Dittenhafer-Reed, Kristin E.
Richards, Alicia L.
Fan, Jing
Smallegan, Michael J.
Fotuhi Siahpirani, Alireza
Kemmerer, Zachary A.
Prolla, Tomas A.
Roy, Sushmita
Coon, Joshua J.
Denu, John M.
description SIRT3 is a member of the Sirtuin family of NAD+-dependent deacylases and plays a critical role in metabolic regulation. Organism-wide SIRT3 loss manifests in metabolic alterations; however, the coordinating role of SIRT3 among metabolically distinct tissues is unknown. Using multi-tissue quantitative proteomics comparing fasted wild-type mice to mice lacking SIRT3, innovative bioinformatic analysis, and biochemical validation, we provide a comprehensive view of mitochondrial acetylation and SIRT3 function. We find SIRT3 regulates the acetyl-proteome in core mitochondrial processes common to brain, heart, kidney, liver, and skeletal muscle, but differentially regulates metabolic pathways in fuel-producing and fuel-utilizing tissues. We propose an additional maintenance function for SIRT3 in liver and kidney where SIRT3 expression is elevated to reduce the acetate load on mitochondrial proteins. We provide evidence that SIRT3 impacts ketone body utilization in the brain and reveal a pivotal role for SIRT3 in the coordination between tissues required for metabolic homeostasis. [Display omitted] •Comprehensive, quantitative multi-tissue acetylome analysis•SIRT3 functions in both common and tissue-specific metabolic pathways•SIRT3 regulates ketone body utilization in extra-hepatic tissues•Pathway analysis tool incorporating site-specific acetylation dynamics Using multi-tissue quantitative acetyl-proteomics combined with bioinformatic analysis and biochemical validation, Dittenhafer-Reed et al. provide a comprehensive view of mitochondrial acetylation and SIRT3 function. SIRT3 coordinates metabolic homeostasis between fuel-producing (liver and kidney) and fuel-utilizing tissues (brain, heart, skeletal muscle) via dynamic acetylation, including ketone body utilization in the brain.
doi_str_mv 10.1016/j.cmet.2015.03.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4393847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1550413115001102</els_id><sourcerecordid>1672873304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-caa0b1a8d2b764e00cd3099695c597375a21fc94923bb3ae0270690f213f18143</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVpadK0f6CH4mMvdkcay7KgFMLStIGEQLI9C1keJ1q81taSE_rvq2XTkFx6moF5783Mx9hHDhUH3nzZVG5LqRLAZQVYAahX7JhrFKWqBbzOvZRQ1hz5EXsX4wYAG9T4lh0J2TYoJB6z05vz6zUWl9R7mygWl8uYfLn2MS5UrMKyG_10WwxhzpJkuzB6V5wtNBY3Dz65uzx8z94Mdoz04bGesF9n39ern-XF1Y_z1elF6WopU-mshY7bthedamoCcD2C1o2WTmqFSlrBB6drLbDr0BIIBY2GQXAceMtrPGHfDrm7pdtS72hKsx3NbvZbO_8xwXrzcjL5O3Mb7k2df25rlQM-PwbM4fdCMZmtj47G0U4Ulmh4o0SrEGG_Sxykbg4xzjQ8reFg9uzNxuzZmz17A2gy-2z69PzAJ8s_2Fnw9SCgjOne02yi8zS5zH4ml0wf_P_y_wKmkZSj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672873304</pqid></control><display><type>article</type><title>SIRT3 Mediates Multi-Tissue Coupling for Metabolic Fuel Switching</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dittenhafer-Reed, Kristin E. ; Richards, Alicia L. ; Fan, Jing ; Smallegan, Michael J. ; Fotuhi Siahpirani, Alireza ; Kemmerer, Zachary A. ; Prolla, Tomas A. ; Roy, Sushmita ; Coon, Joshua J. ; Denu, John M.</creator><creatorcontrib>Dittenhafer-Reed, Kristin E. ; Richards, Alicia L. ; Fan, Jing ; Smallegan, Michael J. ; Fotuhi Siahpirani, Alireza ; Kemmerer, Zachary A. ; Prolla, Tomas A. ; Roy, Sushmita ; Coon, Joshua J. ; Denu, John M.</creatorcontrib><description>SIRT3 is a member of the Sirtuin family of NAD+-dependent deacylases and plays a critical role in metabolic regulation. Organism-wide SIRT3 loss manifests in metabolic alterations; however, the coordinating role of SIRT3 among metabolically distinct tissues is unknown. Using multi-tissue quantitative proteomics comparing fasted wild-type mice to mice lacking SIRT3, innovative bioinformatic analysis, and biochemical validation, we provide a comprehensive view of mitochondrial acetylation and SIRT3 function. We find SIRT3 regulates the acetyl-proteome in core mitochondrial processes common to brain, heart, kidney, liver, and skeletal muscle, but differentially regulates metabolic pathways in fuel-producing and fuel-utilizing tissues. We propose an additional maintenance function for SIRT3 in liver and kidney where SIRT3 expression is elevated to reduce the acetate load on mitochondrial proteins. We provide evidence that SIRT3 impacts ketone body utilization in the brain and reveal a pivotal role for SIRT3 in the coordination between tissues required for metabolic homeostasis. [Display omitted] •Comprehensive, quantitative multi-tissue acetylome analysis•SIRT3 functions in both common and tissue-specific metabolic pathways•SIRT3 regulates ketone body utilization in extra-hepatic tissues•Pathway analysis tool incorporating site-specific acetylation dynamics Using multi-tissue quantitative acetyl-proteomics combined with bioinformatic analysis and biochemical validation, Dittenhafer-Reed et al. provide a comprehensive view of mitochondrial acetylation and SIRT3 function. SIRT3 coordinates metabolic homeostasis between fuel-producing (liver and kidney) and fuel-utilizing tissues (brain, heart, skeletal muscle) via dynamic acetylation, including ketone body utilization in the brain.</description><identifier>ISSN: 1550-4131</identifier><identifier>EISSN: 1932-7420</identifier><identifier>DOI: 10.1016/j.cmet.2015.03.007</identifier><identifier>PMID: 25863253</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetylation ; Animals ; Brain - metabolism ; Computational Biology ; Gene Expression Regulation - physiology ; Homeostasis - physiology ; Ketone Bodies - metabolism ; Kidney - metabolism ; Liver - metabolism ; Metabolic Networks and Pathways - genetics ; Metabolic Networks and Pathways - physiology ; Mice ; Mice, Knockout ; Mitochondria - physiology ; Proteomics ; Sirtuin 3 - metabolism</subject><ispartof>Cell metabolism, 2015-04, Vol.21 (4), p.637-646</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>2015 Published by Elsevier Inc. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-caa0b1a8d2b764e00cd3099695c597375a21fc94923bb3ae0270690f213f18143</citedby><cites>FETCH-LOGICAL-c455t-caa0b1a8d2b764e00cd3099695c597375a21fc94923bb3ae0270690f213f18143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1550413115001102$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25863253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dittenhafer-Reed, Kristin E.</creatorcontrib><creatorcontrib>Richards, Alicia L.</creatorcontrib><creatorcontrib>Fan, Jing</creatorcontrib><creatorcontrib>Smallegan, Michael J.</creatorcontrib><creatorcontrib>Fotuhi Siahpirani, Alireza</creatorcontrib><creatorcontrib>Kemmerer, Zachary A.</creatorcontrib><creatorcontrib>Prolla, Tomas A.</creatorcontrib><creatorcontrib>Roy, Sushmita</creatorcontrib><creatorcontrib>Coon, Joshua J.</creatorcontrib><creatorcontrib>Denu, John M.</creatorcontrib><title>SIRT3 Mediates Multi-Tissue Coupling for Metabolic Fuel Switching</title><title>Cell metabolism</title><addtitle>Cell Metab</addtitle><description>SIRT3 is a member of the Sirtuin family of NAD+-dependent deacylases and plays a critical role in metabolic regulation. Organism-wide SIRT3 loss manifests in metabolic alterations; however, the coordinating role of SIRT3 among metabolically distinct tissues is unknown. Using multi-tissue quantitative proteomics comparing fasted wild-type mice to mice lacking SIRT3, innovative bioinformatic analysis, and biochemical validation, we provide a comprehensive view of mitochondrial acetylation and SIRT3 function. We find SIRT3 regulates the acetyl-proteome in core mitochondrial processes common to brain, heart, kidney, liver, and skeletal muscle, but differentially regulates metabolic pathways in fuel-producing and fuel-utilizing tissues. We propose an additional maintenance function for SIRT3 in liver and kidney where SIRT3 expression is elevated to reduce the acetate load on mitochondrial proteins. We provide evidence that SIRT3 impacts ketone body utilization in the brain and reveal a pivotal role for SIRT3 in the coordination between tissues required for metabolic homeostasis. [Display omitted] •Comprehensive, quantitative multi-tissue acetylome analysis•SIRT3 functions in both common and tissue-specific metabolic pathways•SIRT3 regulates ketone body utilization in extra-hepatic tissues•Pathway analysis tool incorporating site-specific acetylation dynamics Using multi-tissue quantitative acetyl-proteomics combined with bioinformatic analysis and biochemical validation, Dittenhafer-Reed et al. provide a comprehensive view of mitochondrial acetylation and SIRT3 function. SIRT3 coordinates metabolic homeostasis between fuel-producing (liver and kidney) and fuel-utilizing tissues (brain, heart, skeletal muscle) via dynamic acetylation, including ketone body utilization in the brain.</description><subject>Acetylation</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Computational Biology</subject><subject>Gene Expression Regulation - physiology</subject><subject>Homeostasis - physiology</subject><subject>Ketone Bodies - metabolism</subject><subject>Kidney - metabolism</subject><subject>Liver - metabolism</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolic Networks and Pathways - physiology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria - physiology</subject><subject>Proteomics</subject><subject>Sirtuin 3 - metabolism</subject><issn>1550-4131</issn><issn>1932-7420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFr3DAQhUVpadK0f6CH4mMvdkcay7KgFMLStIGEQLI9C1keJ1q81taSE_rvq2XTkFx6moF5783Mx9hHDhUH3nzZVG5LqRLAZQVYAahX7JhrFKWqBbzOvZRQ1hz5EXsX4wYAG9T4lh0J2TYoJB6z05vz6zUWl9R7mygWl8uYfLn2MS5UrMKyG_10WwxhzpJkuzB6V5wtNBY3Dz65uzx8z94Mdoz04bGesF9n39ern-XF1Y_z1elF6WopU-mshY7bthedamoCcD2C1o2WTmqFSlrBB6drLbDr0BIIBY2GQXAceMtrPGHfDrm7pdtS72hKsx3NbvZbO_8xwXrzcjL5O3Mb7k2df25rlQM-PwbM4fdCMZmtj47G0U4Ulmh4o0SrEGG_Sxykbg4xzjQ8reFg9uzNxuzZmz17A2gy-2z69PzAJ8s_2Fnw9SCgjOne02yi8zS5zH4ml0wf_P_y_wKmkZSj</recordid><startdate>20150407</startdate><enddate>20150407</enddate><creator>Dittenhafer-Reed, Kristin E.</creator><creator>Richards, Alicia L.</creator><creator>Fan, Jing</creator><creator>Smallegan, Michael J.</creator><creator>Fotuhi Siahpirani, Alireza</creator><creator>Kemmerer, Zachary A.</creator><creator>Prolla, Tomas A.</creator><creator>Roy, Sushmita</creator><creator>Coon, Joshua J.</creator><creator>Denu, John M.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150407</creationdate><title>SIRT3 Mediates Multi-Tissue Coupling for Metabolic Fuel Switching</title><author>Dittenhafer-Reed, Kristin E. ; Richards, Alicia L. ; Fan, Jing ; Smallegan, Michael J. ; Fotuhi Siahpirani, Alireza ; Kemmerer, Zachary A. ; Prolla, Tomas A. ; Roy, Sushmita ; Coon, Joshua J. ; Denu, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-caa0b1a8d2b764e00cd3099695c597375a21fc94923bb3ae0270690f213f18143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acetylation</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Computational Biology</topic><topic>Gene Expression Regulation - physiology</topic><topic>Homeostasis - physiology</topic><topic>Ketone Bodies - metabolism</topic><topic>Kidney - metabolism</topic><topic>Liver - metabolism</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolic Networks and Pathways - physiology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria - physiology</topic><topic>Proteomics</topic><topic>Sirtuin 3 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dittenhafer-Reed, Kristin E.</creatorcontrib><creatorcontrib>Richards, Alicia L.</creatorcontrib><creatorcontrib>Fan, Jing</creatorcontrib><creatorcontrib>Smallegan, Michael J.</creatorcontrib><creatorcontrib>Fotuhi Siahpirani, Alireza</creatorcontrib><creatorcontrib>Kemmerer, Zachary A.</creatorcontrib><creatorcontrib>Prolla, Tomas A.</creatorcontrib><creatorcontrib>Roy, Sushmita</creatorcontrib><creatorcontrib>Coon, Joshua J.</creatorcontrib><creatorcontrib>Denu, John M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dittenhafer-Reed, Kristin E.</au><au>Richards, Alicia L.</au><au>Fan, Jing</au><au>Smallegan, Michael J.</au><au>Fotuhi Siahpirani, Alireza</au><au>Kemmerer, Zachary A.</au><au>Prolla, Tomas A.</au><au>Roy, Sushmita</au><au>Coon, Joshua J.</au><au>Denu, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SIRT3 Mediates Multi-Tissue Coupling for Metabolic Fuel Switching</atitle><jtitle>Cell metabolism</jtitle><addtitle>Cell Metab</addtitle><date>2015-04-07</date><risdate>2015</risdate><volume>21</volume><issue>4</issue><spage>637</spage><epage>646</epage><pages>637-646</pages><issn>1550-4131</issn><eissn>1932-7420</eissn><abstract>SIRT3 is a member of the Sirtuin family of NAD+-dependent deacylases and plays a critical role in metabolic regulation. Organism-wide SIRT3 loss manifests in metabolic alterations; however, the coordinating role of SIRT3 among metabolically distinct tissues is unknown. Using multi-tissue quantitative proteomics comparing fasted wild-type mice to mice lacking SIRT3, innovative bioinformatic analysis, and biochemical validation, we provide a comprehensive view of mitochondrial acetylation and SIRT3 function. We find SIRT3 regulates the acetyl-proteome in core mitochondrial processes common to brain, heart, kidney, liver, and skeletal muscle, but differentially regulates metabolic pathways in fuel-producing and fuel-utilizing tissues. We propose an additional maintenance function for SIRT3 in liver and kidney where SIRT3 expression is elevated to reduce the acetate load on mitochondrial proteins. We provide evidence that SIRT3 impacts ketone body utilization in the brain and reveal a pivotal role for SIRT3 in the coordination between tissues required for metabolic homeostasis. [Display omitted] •Comprehensive, quantitative multi-tissue acetylome analysis•SIRT3 functions in both common and tissue-specific metabolic pathways•SIRT3 regulates ketone body utilization in extra-hepatic tissues•Pathway analysis tool incorporating site-specific acetylation dynamics Using multi-tissue quantitative acetyl-proteomics combined with bioinformatic analysis and biochemical validation, Dittenhafer-Reed et al. provide a comprehensive view of mitochondrial acetylation and SIRT3 function. SIRT3 coordinates metabolic homeostasis between fuel-producing (liver and kidney) and fuel-utilizing tissues (brain, heart, skeletal muscle) via dynamic acetylation, including ketone body utilization in the brain.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25863253</pmid><doi>10.1016/j.cmet.2015.03.007</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-4131
ispartof Cell metabolism, 2015-04, Vol.21 (4), p.637-646
issn 1550-4131
1932-7420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4393847
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Acetylation
Animals
Brain - metabolism
Computational Biology
Gene Expression Regulation - physiology
Homeostasis - physiology
Ketone Bodies - metabolism
Kidney - metabolism
Liver - metabolism
Metabolic Networks and Pathways - genetics
Metabolic Networks and Pathways - physiology
Mice
Mice, Knockout
Mitochondria - physiology
Proteomics
Sirtuin 3 - metabolism
title SIRT3 Mediates Multi-Tissue Coupling for Metabolic Fuel Switching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SIRT3%20Mediates%20Multi-Tissue%20Coupling%20for%20Metabolic%20Fuel%20Switching&rft.jtitle=Cell%20metabolism&rft.au=Dittenhafer-Reed,%20Kristin%C2%A0E.&rft.date=2015-04-07&rft.volume=21&rft.issue=4&rft.spage=637&rft.epage=646&rft.pages=637-646&rft.issn=1550-4131&rft.eissn=1932-7420&rft_id=info:doi/10.1016/j.cmet.2015.03.007&rft_dat=%3Cproquest_pubme%3E1672873304%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672873304&rft_id=info:pmid/25863253&rft_els_id=S1550413115001102&rfr_iscdi=true