Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes
At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondr...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2015-04, Vol.34 (7), p.911-924 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 924 |
---|---|
container_issue | 7 |
container_start_page | 911 |
container_title | The EMBO journal |
container_volume | 34 |
creator | Bender, Tom Pena, Gabrielle Martinou, Jean-Claude |
description | At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondrial pyruvate carrier (MPC), encoded by
MPC1, MPC2, and MPC3
in yeast, is required for uptake of pyruvate into the organelle. Here, we show that while expression of Mpc1 is not dependent on the carbon source, expression of Mpc2 and Mpc3 is specific to fermentative or respiratory conditions, respectively. This gives rise to two alternative carrier complexes that we have termed MPC
FERM
and MPC
OX
. By constitutively expressing the two alternative complexes in yeast deleted for all three endogenous genes, we show that MPC
OX
has a higher transport activity than MPC
FERM
, which is dependent on the C‐terminus of Mpc3. We propose that the alternative MPC subunit expression in yeast provides a way of adapting cellular metabolism to the nutrient availability.
Synopsis
Two alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities exist in yeast, and alternative MPC subunit expression is specific to fermentative or respiratory growth conditions, adapting cellular metabolism to nutrient availability.
The active form of the mitochondrial pyruvate carrier in
Saccharomyces cerevisiae
is a heterodimer of either Mpc1 and Mpc2 (MPCFERM) or Mpc1 and Mpc3 (MPCOX).
MPCFERM and MPCOX are expressed under fermentative and respiratory conditions, respectively.
MPCOX has higher pyruvate transport activity than MPCFERM owing to differences in the C‐terminal region of Mpc2/Mpc3.
The alternative expression of MPCFERM or MPCOX may be involved in the Crabtree effect of
S. cerevisiae
.
Graphical Abstract
Different growth conditions trigger the expression of alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities, allowing yeast cells to adapt cellular metabolism to nutrient availability. |
doi_str_mv | 10.15252/embj.201490197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4388599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669833326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6217-c9f86b95fa9c2dfa4ee09eed225e85dd88c5faaae4f708ac678990848cae4a2f3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EokNhzQ5FYsMmrR_xiwUSlD5A5SFExdLyODdTT5042Mm08-8JnTIMSIiVJd_vHJ_rg9BTgg8Ip5weQjtfHlBMKo2JlvfQjFQClxRLfh_NMBWkrIjSe-hRzkuMMVeSPER7lAtJmWAzdPEFFmOwg49dEZui9UN0l7Grk7eh6NdpXNkBirEf7BUU83VhwwCpm_gV_B47m5KHVLjY9gFuID9GDxobMjy5O_fRxcnx16Oz8vzT6buj1-elE5TI0ulGibnmjdWO1o2tALAGqCnloHhdK-WmmbVQNRIr64RUWmNVKTddWdqwffRq49uP8xZqB92QbDB98q1NaxOtN39OOn9pFnFlKqYU13oyeHFnkOL3EfJgWp8dhGA7iGM2RAitGGNUTOjzv9BlHKevCLeU1IRRqSbqcEO5FHNO0GzDEGxuKzM_KzPbyibFs90dtvyvjibg5Qa49gHW__Mzxx_evN91xxtxnnTdAtJO6n8GKjcSnwe42b5n05URkkluvn08NfqtOlP4c2UU-wFZNsVX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1667913278</pqid></control><display><type>article</type><title>Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes</title><source>Springer Nature OA Free Journals</source><creator>Bender, Tom ; Pena, Gabrielle ; Martinou, Jean-Claude</creator><creatorcontrib>Bender, Tom ; Pena, Gabrielle ; Martinou, Jean-Claude</creatorcontrib><description>At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondrial pyruvate carrier (MPC), encoded by
MPC1, MPC2, and MPC3
in yeast, is required for uptake of pyruvate into the organelle. Here, we show that while expression of Mpc1 is not dependent on the carbon source, expression of Mpc2 and Mpc3 is specific to fermentative or respiratory conditions, respectively. This gives rise to two alternative carrier complexes that we have termed MPC
FERM
and MPC
OX
. By constitutively expressing the two alternative complexes in yeast deleted for all three endogenous genes, we show that MPC
OX
has a higher transport activity than MPC
FERM
, which is dependent on the C‐terminus of Mpc3. We propose that the alternative MPC subunit expression in yeast provides a way of adapting cellular metabolism to the nutrient availability.
Synopsis
Two alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities exist in yeast, and alternative MPC subunit expression is specific to fermentative or respiratory growth conditions, adapting cellular metabolism to nutrient availability.
The active form of the mitochondrial pyruvate carrier in
Saccharomyces cerevisiae
is a heterodimer of either Mpc1 and Mpc2 (MPCFERM) or Mpc1 and Mpc3 (MPCOX).
MPCFERM and MPCOX are expressed under fermentative and respiratory conditions, respectively.
MPCOX has higher pyruvate transport activity than MPCFERM owing to differences in the C‐terminal region of Mpc2/Mpc3.
The alternative expression of MPCFERM or MPCOX may be involved in the Crabtree effect of
S. cerevisiae
.
Graphical Abstract
Different growth conditions trigger the expression of alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities, allowing yeast cells to adapt cellular metabolism to nutrient availability.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201490197</identifier><identifier>PMID: 25672363</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Anion Transport Proteins - biosynthesis ; Anion Transport Proteins - genetics ; Biological Transport, Active - physiology ; Carbon sources ; Cellular biology ; EMBO20 ; EMBO21 ; Ethanol ; Gene Expression Regulation, Fungal - physiology ; Growth conditions ; Membrane Proteins - biosynthesis ; Membrane Proteins - genetics ; Metabolism ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial Membrane Transport Proteins ; mitochondrial pyruvate carrier ; Molecular biology ; Multiprotein Complexes - biosynthesis ; Multiprotein Complexes - genetics ; Nutrient availability ; Nutrient transport ; Oxygen Consumption - physiology ; Phosphotransferases (Alcohol Group Acceptor) - biosynthesis ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; pyruvate branch point ; Pyruvic Acid - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - biosynthesis ; Saccharomyces cerevisiae Proteins - genetics ; Yeast ; Yeasts</subject><ispartof>The EMBO journal, 2015-04, Vol.34 (7), p.911-924</ispartof><rights>The Authors 2015</rights><rights>2015 The Authors</rights><rights>2015 The Authors.</rights><rights>2015 EMBO</rights><rights>2015 The Authors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6217-c9f86b95fa9c2dfa4ee09eed225e85dd88c5faaae4f708ac678990848cae4a2f3</citedby><cites>FETCH-LOGICAL-c6217-c9f86b95fa9c2dfa4ee09eed225e85dd88c5faaae4f708ac678990848cae4a2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388599/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388599/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.201490197$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25672363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bender, Tom</creatorcontrib><creatorcontrib>Pena, Gabrielle</creatorcontrib><creatorcontrib>Martinou, Jean-Claude</creatorcontrib><title>Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondrial pyruvate carrier (MPC), encoded by
MPC1, MPC2, and MPC3
in yeast, is required for uptake of pyruvate into the organelle. Here, we show that while expression of Mpc1 is not dependent on the carbon source, expression of Mpc2 and Mpc3 is specific to fermentative or respiratory conditions, respectively. This gives rise to two alternative carrier complexes that we have termed MPC
FERM
and MPC
OX
. By constitutively expressing the two alternative complexes in yeast deleted for all three endogenous genes, we show that MPC
OX
has a higher transport activity than MPC
FERM
, which is dependent on the C‐terminus of Mpc3. We propose that the alternative MPC subunit expression in yeast provides a way of adapting cellular metabolism to the nutrient availability.
Synopsis
Two alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities exist in yeast, and alternative MPC subunit expression is specific to fermentative or respiratory growth conditions, adapting cellular metabolism to nutrient availability.
The active form of the mitochondrial pyruvate carrier in
Saccharomyces cerevisiae
is a heterodimer of either Mpc1 and Mpc2 (MPCFERM) or Mpc1 and Mpc3 (MPCOX).
MPCFERM and MPCOX are expressed under fermentative and respiratory conditions, respectively.
MPCOX has higher pyruvate transport activity than MPCFERM owing to differences in the C‐terminal region of Mpc2/Mpc3.
The alternative expression of MPCFERM or MPCOX may be involved in the Crabtree effect of
S. cerevisiae
.
Graphical Abstract
Different growth conditions trigger the expression of alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities, allowing yeast cells to adapt cellular metabolism to nutrient availability.</description><subject>Anion Transport Proteins - biosynthesis</subject><subject>Anion Transport Proteins - genetics</subject><subject>Biological Transport, Active - physiology</subject><subject>Carbon sources</subject><subject>Cellular biology</subject><subject>EMBO20</subject><subject>EMBO21</subject><subject>Ethanol</subject><subject>Gene Expression Regulation, Fungal - physiology</subject><subject>Growth conditions</subject><subject>Membrane Proteins - biosynthesis</subject><subject>Membrane Proteins - genetics</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins</subject><subject>mitochondrial pyruvate carrier</subject><subject>Molecular biology</subject><subject>Multiprotein Complexes - biosynthesis</subject><subject>Multiprotein Complexes - genetics</subject><subject>Nutrient availability</subject><subject>Nutrient transport</subject><subject>Oxygen Consumption - physiology</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - biosynthesis</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>pyruvate branch point</subject><subject>Pyruvic Acid - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - biosynthesis</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EokNhzQ5FYsMmrR_xiwUSlD5A5SFExdLyODdTT5042Mm08-8JnTIMSIiVJd_vHJ_rg9BTgg8Ip5weQjtfHlBMKo2JlvfQjFQClxRLfh_NMBWkrIjSe-hRzkuMMVeSPER7lAtJmWAzdPEFFmOwg49dEZui9UN0l7Grk7eh6NdpXNkBirEf7BUU83VhwwCpm_gV_B47m5KHVLjY9gFuID9GDxobMjy5O_fRxcnx16Oz8vzT6buj1-elE5TI0ulGibnmjdWO1o2tALAGqCnloHhdK-WmmbVQNRIr64RUWmNVKTddWdqwffRq49uP8xZqB92QbDB98q1NaxOtN39OOn9pFnFlKqYU13oyeHFnkOL3EfJgWp8dhGA7iGM2RAitGGNUTOjzv9BlHKevCLeU1IRRqSbqcEO5FHNO0GzDEGxuKzM_KzPbyibFs90dtvyvjibg5Qa49gHW__Mzxx_evN91xxtxnnTdAtJO6n8GKjcSnwe42b5n05URkkluvn08NfqtOlP4c2UU-wFZNsVX</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Bender, Tom</creator><creator>Pena, Gabrielle</creator><creator>Martinou, Jean-Claude</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>BlackWell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150401</creationdate><title>Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes</title><author>Bender, Tom ; Pena, Gabrielle ; Martinou, Jean-Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6217-c9f86b95fa9c2dfa4ee09eed225e85dd88c5faaae4f708ac678990848cae4a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anion Transport Proteins - biosynthesis</topic><topic>Anion Transport Proteins - genetics</topic><topic>Biological Transport, Active - physiology</topic><topic>Carbon sources</topic><topic>Cellular biology</topic><topic>EMBO20</topic><topic>EMBO21</topic><topic>Ethanol</topic><topic>Gene Expression Regulation, Fungal - physiology</topic><topic>Growth conditions</topic><topic>Membrane Proteins - biosynthesis</topic><topic>Membrane Proteins - genetics</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins</topic><topic>mitochondrial pyruvate carrier</topic><topic>Molecular biology</topic><topic>Multiprotein Complexes - biosynthesis</topic><topic>Multiprotein Complexes - genetics</topic><topic>Nutrient availability</topic><topic>Nutrient transport</topic><topic>Oxygen Consumption - physiology</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - biosynthesis</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>pyruvate branch point</topic><topic>Pyruvic Acid - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - biosynthesis</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bender, Tom</creatorcontrib><creatorcontrib>Pena, Gabrielle</creatorcontrib><creatorcontrib>Martinou, Jean-Claude</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bender, Tom</au><au>Pena, Gabrielle</au><au>Martinou, Jean-Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>34</volume><issue>7</issue><spage>911</spage><epage>924</epage><pages>911-924</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondrial pyruvate carrier (MPC), encoded by
MPC1, MPC2, and MPC3
in yeast, is required for uptake of pyruvate into the organelle. Here, we show that while expression of Mpc1 is not dependent on the carbon source, expression of Mpc2 and Mpc3 is specific to fermentative or respiratory conditions, respectively. This gives rise to two alternative carrier complexes that we have termed MPC
FERM
and MPC
OX
. By constitutively expressing the two alternative complexes in yeast deleted for all three endogenous genes, we show that MPC
OX
has a higher transport activity than MPC
FERM
, which is dependent on the C‐terminus of Mpc3. We propose that the alternative MPC subunit expression in yeast provides a way of adapting cellular metabolism to the nutrient availability.
Synopsis
Two alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities exist in yeast, and alternative MPC subunit expression is specific to fermentative or respiratory growth conditions, adapting cellular metabolism to nutrient availability.
The active form of the mitochondrial pyruvate carrier in
Saccharomyces cerevisiae
is a heterodimer of either Mpc1 and Mpc2 (MPCFERM) or Mpc1 and Mpc3 (MPCOX).
MPCFERM and MPCOX are expressed under fermentative and respiratory conditions, respectively.
MPCOX has higher pyruvate transport activity than MPCFERM owing to differences in the C‐terminal region of Mpc2/Mpc3.
The alternative expression of MPCFERM or MPCOX may be involved in the Crabtree effect of
S. cerevisiae
.
Graphical Abstract
Different growth conditions trigger the expression of alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities, allowing yeast cells to adapt cellular metabolism to nutrient availability.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>25672363</pmid><doi>10.15252/embj.201490197</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2015-04, Vol.34 (7), p.911-924 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4388599 |
source | Springer Nature OA Free Journals |
subjects | Anion Transport Proteins - biosynthesis Anion Transport Proteins - genetics Biological Transport, Active - physiology Carbon sources Cellular biology EMBO20 EMBO21 Ethanol Gene Expression Regulation, Fungal - physiology Growth conditions Membrane Proteins - biosynthesis Membrane Proteins - genetics Metabolism Mitochondria Mitochondria - genetics Mitochondria - metabolism Mitochondrial Membrane Transport Proteins mitochondrial pyruvate carrier Molecular biology Multiprotein Complexes - biosynthesis Multiprotein Complexes - genetics Nutrient availability Nutrient transport Oxygen Consumption - physiology Phosphotransferases (Alcohol Group Acceptor) - biosynthesis Phosphotransferases (Alcohol Group Acceptor) - genetics pyruvate branch point Pyruvic Acid - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - biosynthesis Saccharomyces cerevisiae Proteins - genetics Yeast Yeasts |
title | Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20mitochondrial%20pyruvate%20uptake%20by%20alternative%20pyruvate%20carrier%20complexes&rft.jtitle=The%20EMBO%20journal&rft.au=Bender,%20Tom&rft.date=2015-04-01&rft.volume=34&rft.issue=7&rft.spage=911&rft.epage=924&rft.pages=911-924&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.15252/embj.201490197&rft_dat=%3Cproquest_C6C%3E1669833326%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1667913278&rft_id=info:pmid/25672363&rfr_iscdi=true |