Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes

At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2015-04, Vol.34 (7), p.911-924
Hauptverfasser: Bender, Tom, Pena, Gabrielle, Martinou, Jean-Claude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 924
container_issue 7
container_start_page 911
container_title The EMBO journal
container_volume 34
creator Bender, Tom
Pena, Gabrielle
Martinou, Jean-Claude
description At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondrial pyruvate carrier (MPC), encoded by MPC1, MPC2, and MPC3 in yeast, is required for uptake of pyruvate into the organelle. Here, we show that while expression of Mpc1 is not dependent on the carbon source, expression of Mpc2 and Mpc3 is specific to fermentative or respiratory conditions, respectively. This gives rise to two alternative carrier complexes that we have termed MPC FERM and MPC OX . By constitutively expressing the two alternative complexes in yeast deleted for all three endogenous genes, we show that MPC OX has a higher transport activity than MPC FERM , which is dependent on the C‐terminus of Mpc3. We propose that the alternative MPC subunit expression in yeast provides a way of adapting cellular metabolism to the nutrient availability. Synopsis Two alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities exist in yeast, and alternative MPC subunit expression is specific to fermentative or respiratory growth conditions, adapting cellular metabolism to nutrient availability. The active form of the mitochondrial pyruvate carrier in Saccharomyces cerevisiae is a heterodimer of either Mpc1 and Mpc2 (MPCFERM) or Mpc1 and Mpc3 (MPCOX). MPCFERM and MPCOX are expressed under fermentative and respiratory conditions, respectively. MPCOX has higher pyruvate transport activity than MPCFERM owing to differences in the C‐terminal region of Mpc2/Mpc3. The alternative expression of MPCFERM or MPCOX may be involved in the Crabtree effect of S. cerevisiae . Graphical Abstract Different growth conditions trigger the expression of alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities, allowing yeast cells to adapt cellular metabolism to nutrient availability.
doi_str_mv 10.15252/embj.201490197
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4388599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669833326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6217-c9f86b95fa9c2dfa4ee09eed225e85dd88c5faaae4f708ac678990848cae4a2f3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EokNhzQ5FYsMmrR_xiwUSlD5A5SFExdLyODdTT5042Mm08-8JnTIMSIiVJd_vHJ_rg9BTgg8Ip5weQjtfHlBMKo2JlvfQjFQClxRLfh_NMBWkrIjSe-hRzkuMMVeSPER7lAtJmWAzdPEFFmOwg49dEZui9UN0l7Grk7eh6NdpXNkBirEf7BUU83VhwwCpm_gV_B47m5KHVLjY9gFuID9GDxobMjy5O_fRxcnx16Oz8vzT6buj1-elE5TI0ulGibnmjdWO1o2tALAGqCnloHhdK-WmmbVQNRIr64RUWmNVKTddWdqwffRq49uP8xZqB92QbDB98q1NaxOtN39OOn9pFnFlKqYU13oyeHFnkOL3EfJgWp8dhGA7iGM2RAitGGNUTOjzv9BlHKevCLeU1IRRqSbqcEO5FHNO0GzDEGxuKzM_KzPbyibFs90dtvyvjibg5Qa49gHW__Mzxx_evN91xxtxnnTdAtJO6n8GKjcSnwe42b5n05URkkluvn08NfqtOlP4c2UU-wFZNsVX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1667913278</pqid></control><display><type>article</type><title>Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes</title><source>Springer Nature OA Free Journals</source><creator>Bender, Tom ; Pena, Gabrielle ; Martinou, Jean-Claude</creator><creatorcontrib>Bender, Tom ; Pena, Gabrielle ; Martinou, Jean-Claude</creatorcontrib><description>At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondrial pyruvate carrier (MPC), encoded by MPC1, MPC2, and MPC3 in yeast, is required for uptake of pyruvate into the organelle. Here, we show that while expression of Mpc1 is not dependent on the carbon source, expression of Mpc2 and Mpc3 is specific to fermentative or respiratory conditions, respectively. This gives rise to two alternative carrier complexes that we have termed MPC FERM and MPC OX . By constitutively expressing the two alternative complexes in yeast deleted for all three endogenous genes, we show that MPC OX has a higher transport activity than MPC FERM , which is dependent on the C‐terminus of Mpc3. We propose that the alternative MPC subunit expression in yeast provides a way of adapting cellular metabolism to the nutrient availability. Synopsis Two alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities exist in yeast, and alternative MPC subunit expression is specific to fermentative or respiratory growth conditions, adapting cellular metabolism to nutrient availability. The active form of the mitochondrial pyruvate carrier in Saccharomyces cerevisiae is a heterodimer of either Mpc1 and Mpc2 (MPCFERM) or Mpc1 and Mpc3 (MPCOX). MPCFERM and MPCOX are expressed under fermentative and respiratory conditions, respectively. MPCOX has higher pyruvate transport activity than MPCFERM owing to differences in the C‐terminal region of Mpc2/Mpc3. The alternative expression of MPCFERM or MPCOX may be involved in the Crabtree effect of S. cerevisiae . Graphical Abstract Different growth conditions trigger the expression of alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities, allowing yeast cells to adapt cellular metabolism to nutrient availability.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201490197</identifier><identifier>PMID: 25672363</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Anion Transport Proteins - biosynthesis ; Anion Transport Proteins - genetics ; Biological Transport, Active - physiology ; Carbon sources ; Cellular biology ; EMBO20 ; EMBO21 ; Ethanol ; Gene Expression Regulation, Fungal - physiology ; Growth conditions ; Membrane Proteins - biosynthesis ; Membrane Proteins - genetics ; Metabolism ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial Membrane Transport Proteins ; mitochondrial pyruvate carrier ; Molecular biology ; Multiprotein Complexes - biosynthesis ; Multiprotein Complexes - genetics ; Nutrient availability ; Nutrient transport ; Oxygen Consumption - physiology ; Phosphotransferases (Alcohol Group Acceptor) - biosynthesis ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; pyruvate branch point ; Pyruvic Acid - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - biosynthesis ; Saccharomyces cerevisiae Proteins - genetics ; Yeast ; Yeasts</subject><ispartof>The EMBO journal, 2015-04, Vol.34 (7), p.911-924</ispartof><rights>The Authors 2015</rights><rights>2015 The Authors</rights><rights>2015 The Authors.</rights><rights>2015 EMBO</rights><rights>2015 The Authors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6217-c9f86b95fa9c2dfa4ee09eed225e85dd88c5faaae4f708ac678990848cae4a2f3</citedby><cites>FETCH-LOGICAL-c6217-c9f86b95fa9c2dfa4ee09eed225e85dd88c5faaae4f708ac678990848cae4a2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388599/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388599/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.201490197$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25672363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bender, Tom</creatorcontrib><creatorcontrib>Pena, Gabrielle</creatorcontrib><creatorcontrib>Martinou, Jean-Claude</creatorcontrib><title>Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondrial pyruvate carrier (MPC), encoded by MPC1, MPC2, and MPC3 in yeast, is required for uptake of pyruvate into the organelle. Here, we show that while expression of Mpc1 is not dependent on the carbon source, expression of Mpc2 and Mpc3 is specific to fermentative or respiratory conditions, respectively. This gives rise to two alternative carrier complexes that we have termed MPC FERM and MPC OX . By constitutively expressing the two alternative complexes in yeast deleted for all three endogenous genes, we show that MPC OX has a higher transport activity than MPC FERM , which is dependent on the C‐terminus of Mpc3. We propose that the alternative MPC subunit expression in yeast provides a way of adapting cellular metabolism to the nutrient availability. Synopsis Two alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities exist in yeast, and alternative MPC subunit expression is specific to fermentative or respiratory growth conditions, adapting cellular metabolism to nutrient availability. The active form of the mitochondrial pyruvate carrier in Saccharomyces cerevisiae is a heterodimer of either Mpc1 and Mpc2 (MPCFERM) or Mpc1 and Mpc3 (MPCOX). MPCFERM and MPCOX are expressed under fermentative and respiratory conditions, respectively. MPCOX has higher pyruvate transport activity than MPCFERM owing to differences in the C‐terminal region of Mpc2/Mpc3. The alternative expression of MPCFERM or MPCOX may be involved in the Crabtree effect of S. cerevisiae . Graphical Abstract Different growth conditions trigger the expression of alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities, allowing yeast cells to adapt cellular metabolism to nutrient availability.</description><subject>Anion Transport Proteins - biosynthesis</subject><subject>Anion Transport Proteins - genetics</subject><subject>Biological Transport, Active - physiology</subject><subject>Carbon sources</subject><subject>Cellular biology</subject><subject>EMBO20</subject><subject>EMBO21</subject><subject>Ethanol</subject><subject>Gene Expression Regulation, Fungal - physiology</subject><subject>Growth conditions</subject><subject>Membrane Proteins - biosynthesis</subject><subject>Membrane Proteins - genetics</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins</subject><subject>mitochondrial pyruvate carrier</subject><subject>Molecular biology</subject><subject>Multiprotein Complexes - biosynthesis</subject><subject>Multiprotein Complexes - genetics</subject><subject>Nutrient availability</subject><subject>Nutrient transport</subject><subject>Oxygen Consumption - physiology</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - biosynthesis</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>pyruvate branch point</subject><subject>Pyruvic Acid - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - biosynthesis</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EokNhzQ5FYsMmrR_xiwUSlD5A5SFExdLyODdTT5042Mm08-8JnTIMSIiVJd_vHJ_rg9BTgg8Ip5weQjtfHlBMKo2JlvfQjFQClxRLfh_NMBWkrIjSe-hRzkuMMVeSPER7lAtJmWAzdPEFFmOwg49dEZui9UN0l7Grk7eh6NdpXNkBirEf7BUU83VhwwCpm_gV_B47m5KHVLjY9gFuID9GDxobMjy5O_fRxcnx16Oz8vzT6buj1-elE5TI0ulGibnmjdWO1o2tALAGqCnloHhdK-WmmbVQNRIr64RUWmNVKTddWdqwffRq49uP8xZqB92QbDB98q1NaxOtN39OOn9pFnFlKqYU13oyeHFnkOL3EfJgWp8dhGA7iGM2RAitGGNUTOjzv9BlHKevCLeU1IRRqSbqcEO5FHNO0GzDEGxuKzM_KzPbyibFs90dtvyvjibg5Qa49gHW__Mzxx_evN91xxtxnnTdAtJO6n8GKjcSnwe42b5n05URkkluvn08NfqtOlP4c2UU-wFZNsVX</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Bender, Tom</creator><creator>Pena, Gabrielle</creator><creator>Martinou, Jean-Claude</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>BlackWell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150401</creationdate><title>Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes</title><author>Bender, Tom ; Pena, Gabrielle ; Martinou, Jean-Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6217-c9f86b95fa9c2dfa4ee09eed225e85dd88c5faaae4f708ac678990848cae4a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anion Transport Proteins - biosynthesis</topic><topic>Anion Transport Proteins - genetics</topic><topic>Biological Transport, Active - physiology</topic><topic>Carbon sources</topic><topic>Cellular biology</topic><topic>EMBO20</topic><topic>EMBO21</topic><topic>Ethanol</topic><topic>Gene Expression Regulation, Fungal - physiology</topic><topic>Growth conditions</topic><topic>Membrane Proteins - biosynthesis</topic><topic>Membrane Proteins - genetics</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins</topic><topic>mitochondrial pyruvate carrier</topic><topic>Molecular biology</topic><topic>Multiprotein Complexes - biosynthesis</topic><topic>Multiprotein Complexes - genetics</topic><topic>Nutrient availability</topic><topic>Nutrient transport</topic><topic>Oxygen Consumption - physiology</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - biosynthesis</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>pyruvate branch point</topic><topic>Pyruvic Acid - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - biosynthesis</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bender, Tom</creatorcontrib><creatorcontrib>Pena, Gabrielle</creatorcontrib><creatorcontrib>Martinou, Jean-Claude</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bender, Tom</au><au>Pena, Gabrielle</au><au>Martinou, Jean-Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>34</volume><issue>7</issue><spage>911</spage><epage>924</epage><pages>911-924</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondrial pyruvate carrier (MPC), encoded by MPC1, MPC2, and MPC3 in yeast, is required for uptake of pyruvate into the organelle. Here, we show that while expression of Mpc1 is not dependent on the carbon source, expression of Mpc2 and Mpc3 is specific to fermentative or respiratory conditions, respectively. This gives rise to two alternative carrier complexes that we have termed MPC FERM and MPC OX . By constitutively expressing the two alternative complexes in yeast deleted for all three endogenous genes, we show that MPC OX has a higher transport activity than MPC FERM , which is dependent on the C‐terminus of Mpc3. We propose that the alternative MPC subunit expression in yeast provides a way of adapting cellular metabolism to the nutrient availability. Synopsis Two alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities exist in yeast, and alternative MPC subunit expression is specific to fermentative or respiratory growth conditions, adapting cellular metabolism to nutrient availability. The active form of the mitochondrial pyruvate carrier in Saccharomyces cerevisiae is a heterodimer of either Mpc1 and Mpc2 (MPCFERM) or Mpc1 and Mpc3 (MPCOX). MPCFERM and MPCOX are expressed under fermentative and respiratory conditions, respectively. MPCOX has higher pyruvate transport activity than MPCFERM owing to differences in the C‐terminal region of Mpc2/Mpc3. The alternative expression of MPCFERM or MPCOX may be involved in the Crabtree effect of S. cerevisiae . Graphical Abstract Different growth conditions trigger the expression of alternative mitochondrial pyruvate carriers (MPCs) with distinct transport activities, allowing yeast cells to adapt cellular metabolism to nutrient availability.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>25672363</pmid><doi>10.15252/embj.201490197</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2015-04, Vol.34 (7), p.911-924
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4388599
source Springer Nature OA Free Journals
subjects Anion Transport Proteins - biosynthesis
Anion Transport Proteins - genetics
Biological Transport, Active - physiology
Carbon sources
Cellular biology
EMBO20
EMBO21
Ethanol
Gene Expression Regulation, Fungal - physiology
Growth conditions
Membrane Proteins - biosynthesis
Membrane Proteins - genetics
Metabolism
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial Membrane Transport Proteins
mitochondrial pyruvate carrier
Molecular biology
Multiprotein Complexes - biosynthesis
Multiprotein Complexes - genetics
Nutrient availability
Nutrient transport
Oxygen Consumption - physiology
Phosphotransferases (Alcohol Group Acceptor) - biosynthesis
Phosphotransferases (Alcohol Group Acceptor) - genetics
pyruvate branch point
Pyruvic Acid - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - biosynthesis
Saccharomyces cerevisiae Proteins - genetics
Yeast
Yeasts
title Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20mitochondrial%20pyruvate%20uptake%20by%20alternative%20pyruvate%20carrier%20complexes&rft.jtitle=The%20EMBO%20journal&rft.au=Bender,%20Tom&rft.date=2015-04-01&rft.volume=34&rft.issue=7&rft.spage=911&rft.epage=924&rft.pages=911-924&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.15252/embj.201490197&rft_dat=%3Cproquest_C6C%3E1669833326%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1667913278&rft_id=info:pmid/25672363&rfr_iscdi=true