Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots

•Sucrose is transported symplastically towards developing and growing nodosities.•Starch is accumulated and metabolized during nodosities growth and development.•Nodosity formation has systemic effects on non-infected root tips of phylloxerated plants.•Gall formation reprograms processes of the seco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant science (Limerick) 2015-05, Vol.234, p.38-49
Hauptverfasser: Griesser, Michaela, Lawo, Nora Caroline, Crespo-Martinez, Sara, Schoedl-Hummel, Katharina, Wieczorek, Krzysztof, Gorecka, Miroslawa, Liebner, Falk, Zweckmair, Thomas, Stralis Pavese, Nancy, Kreil, David, Forneck, Astrid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue
container_start_page 38
container_title Plant science (Limerick)
container_volume 234
creator Griesser, Michaela
Lawo, Nora Caroline
Crespo-Martinez, Sara
Schoedl-Hummel, Katharina
Wieczorek, Krzysztof
Gorecka, Miroslawa
Liebner, Falk
Zweckmair, Thomas
Stralis Pavese, Nancy
Kreil, David
Forneck, Astrid
description •Sucrose is transported symplastically towards developing and growing nodosities.•Starch is accumulated and metabolized during nodosities growth and development.•Nodosity formation has systemic effects on non-infected root tips of phylloxerated plants.•Gall formation reprograms processes of the secondary metabolism as demonstrated transciptionally. Gall forming phylloxera may compete for nutrients with meristematic tissues and develop heterotrophic structures that act as carbon sinks. In this work, we studied the underlying starch metabolism, sink-source translocation of soluble sugars towards and within root galls. We demonstrated that nodosities store carbohydrates by starch accumulation and monitored the expression of genes involved in the starch metabolic. Thereby we proved that the nodosity is symplastically connected to the source tissues through its development and that the starch metabolism is significantly affected to synthesize and degrade starch within the gall. Genes required for starch biosynthesis and degradation are up-regulated. Among the carbohydrate transporters the expression of a glucose-6-phosphate translocater, one sucrose transporter and two SWEET proteins were increases, whereas hexose transporters, tonoplast monosaccharide transporter and Erd6-like sugar transporters were decreased. We found general evidence for plant response to osmotic stress in the nodosity as previously suggested for gall induction processes. We conclude that nodosities are heterogenous plant organs that accumulate starch to serve as temporary storage structure that is gradually withdrawn by phylloxera. Phylloxera transcriptionally reprograms gall tissues beyond primary metabolism and included downstream secondary processes, including response to osmotic stress.
doi_str_mv 10.1016/j.plantsci.2015.02.002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4388344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168945215000382</els_id><sourcerecordid>1836657373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-4d190e9e2f788ada5fc6cdaa7c29749998542255bff032ef2c753eb5d0d4fb343</originalsourceid><addsrcrecordid>eNqFksFu1DAQhi0EotvCK1Q-bg8bHCdOnAsCtRSQKsEBuFoTZ7Lx4sTB9m7ZF-pz4mXbCk49WZa__5_xzE_Iec6ynOXVm002W5hi0CbjLBcZ4xlj_BlZ5LIuVpyL5jlZJFCumlLwE3IawoYlQoj6JTnhQrJSMrkgd1-HvbXuN3qgyyv4GbfWhXkAk-47E03vrAGk1ybq4YKCjegDjQNSDb51w77zEJGOGKFNZBipmah3LtI1WJtIlzTW3ZppfVS5cYZoWosJTF6go3ETvTVxoGsPM-7MhHT5I1UONIQ5u_jrFl6RFz3YgK_vzzPy_frDt8tPq5svHz9fvr9ZacHKuCq7vGHYIO9rKaED0etKdwC15k1dNk0jRZlmI9q-ZwXHnutaFNiKjnVl3xZlcUbeHn3nbTtip3GKHqyavRnB75UDo_5_mcyg1m6nykLKojwYLO8NvPu1xRDVaIJGm5aFbhtULouqEnVRF0-jVVU1sq5EntDqiGrvQvDYP3aUM3XIg9qohzyoQx4U4yptOwnP__3Po-whAAl4dwQwTXVn0KtkgZPGznjUUXXOPFXjDwkM0AI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666987651</pqid></control><display><type>article</type><title>Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Griesser, Michaela ; Lawo, Nora Caroline ; Crespo-Martinez, Sara ; Schoedl-Hummel, Katharina ; Wieczorek, Krzysztof ; Gorecka, Miroslawa ; Liebner, Falk ; Zweckmair, Thomas ; Stralis Pavese, Nancy ; Kreil, David ; Forneck, Astrid</creator><creatorcontrib>Griesser, Michaela ; Lawo, Nora Caroline ; Crespo-Martinez, Sara ; Schoedl-Hummel, Katharina ; Wieczorek, Krzysztof ; Gorecka, Miroslawa ; Liebner, Falk ; Zweckmair, Thomas ; Stralis Pavese, Nancy ; Kreil, David ; Forneck, Astrid</creatorcontrib><description>•Sucrose is transported symplastically towards developing and growing nodosities.•Starch is accumulated and metabolized during nodosities growth and development.•Nodosity formation has systemic effects on non-infected root tips of phylloxerated plants.•Gall formation reprograms processes of the secondary metabolism as demonstrated transciptionally. Gall forming phylloxera may compete for nutrients with meristematic tissues and develop heterotrophic structures that act as carbon sinks. In this work, we studied the underlying starch metabolism, sink-source translocation of soluble sugars towards and within root galls. We demonstrated that nodosities store carbohydrates by starch accumulation and monitored the expression of genes involved in the starch metabolic. Thereby we proved that the nodosity is symplastically connected to the source tissues through its development and that the starch metabolism is significantly affected to synthesize and degrade starch within the gall. Genes required for starch biosynthesis and degradation are up-regulated. Among the carbohydrate transporters the expression of a glucose-6-phosphate translocater, one sucrose transporter and two SWEET proteins were increases, whereas hexose transporters, tonoplast monosaccharide transporter and Erd6-like sugar transporters were decreased. We found general evidence for plant response to osmotic stress in the nodosity as previously suggested for gall induction processes. We conclude that nodosities are heterogenous plant organs that accumulate starch to serve as temporary storage structure that is gradually withdrawn by phylloxera. Phylloxera transcriptionally reprograms gall tissues beyond primary metabolism and included downstream secondary processes, including response to osmotic stress.</description><identifier>ISSN: 0168-9452</identifier><identifier>EISSN: 1873-2259</identifier><identifier>DOI: 10.1016/j.plantsci.2015.02.002</identifier><identifier>PMID: 25804808</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Animals ; biosynthesis ; Carbohydrate ; Carbohydrate Metabolism ; carbon sinks ; Daktulosphaira vitifoliae ; gene expression ; Gene Expression Profiling ; gene expression regulation ; Gene Expression Regulation, Plant ; genes ; glucose 6-phosphate ; glucose transporters ; Grapevine ; Hemiptera - physiology ; Hemiptera - ultrastructure ; Host-Parasite Interactions ; meristems ; nutrients ; Oligonucleotide Array Sequence Analysis ; osmotic stress ; Phylloxera ; plant organs ; plant proteins ; plant response ; Plant Roots - genetics ; Plant Roots - metabolism ; Plant Roots - parasitology ; Plant Roots - ultrastructure ; Plant sink ; Plant Tumors - genetics ; Plant Tumors - parasitology ; Primary metabolism ; Root gall ; root galls ; roots ; starch ; Starch - metabolism ; sucrose ; tonoplast ; transcription (genetics) ; Vitis ; Vitis - genetics ; Vitis - metabolism ; Vitis - parasitology ; Vitis - ultrastructure</subject><ispartof>Plant science (Limerick), 2015-05, Vol.234, p.38-49</ispartof><rights>2015 The Authors</rights><rights>Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.</rights><rights>2015 The Authors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-4d190e9e2f788ada5fc6cdaa7c29749998542255bff032ef2c753eb5d0d4fb343</citedby><cites>FETCH-LOGICAL-c504t-4d190e9e2f788ada5fc6cdaa7c29749998542255bff032ef2c753eb5d0d4fb343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.plantsci.2015.02.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25804808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Griesser, Michaela</creatorcontrib><creatorcontrib>Lawo, Nora Caroline</creatorcontrib><creatorcontrib>Crespo-Martinez, Sara</creatorcontrib><creatorcontrib>Schoedl-Hummel, Katharina</creatorcontrib><creatorcontrib>Wieczorek, Krzysztof</creatorcontrib><creatorcontrib>Gorecka, Miroslawa</creatorcontrib><creatorcontrib>Liebner, Falk</creatorcontrib><creatorcontrib>Zweckmair, Thomas</creatorcontrib><creatorcontrib>Stralis Pavese, Nancy</creatorcontrib><creatorcontrib>Kreil, David</creatorcontrib><creatorcontrib>Forneck, Astrid</creatorcontrib><title>Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots</title><title>Plant science (Limerick)</title><addtitle>Plant Sci</addtitle><description>•Sucrose is transported symplastically towards developing and growing nodosities.•Starch is accumulated and metabolized during nodosities growth and development.•Nodosity formation has systemic effects on non-infected root tips of phylloxerated plants.•Gall formation reprograms processes of the secondary metabolism as demonstrated transciptionally. Gall forming phylloxera may compete for nutrients with meristematic tissues and develop heterotrophic structures that act as carbon sinks. In this work, we studied the underlying starch metabolism, sink-source translocation of soluble sugars towards and within root galls. We demonstrated that nodosities store carbohydrates by starch accumulation and monitored the expression of genes involved in the starch metabolic. Thereby we proved that the nodosity is symplastically connected to the source tissues through its development and that the starch metabolism is significantly affected to synthesize and degrade starch within the gall. Genes required for starch biosynthesis and degradation are up-regulated. Among the carbohydrate transporters the expression of a glucose-6-phosphate translocater, one sucrose transporter and two SWEET proteins were increases, whereas hexose transporters, tonoplast monosaccharide transporter and Erd6-like sugar transporters were decreased. We found general evidence for plant response to osmotic stress in the nodosity as previously suggested for gall induction processes. We conclude that nodosities are heterogenous plant organs that accumulate starch to serve as temporary storage structure that is gradually withdrawn by phylloxera. Phylloxera transcriptionally reprograms gall tissues beyond primary metabolism and included downstream secondary processes, including response to osmotic stress.</description><subject>Animals</subject><subject>biosynthesis</subject><subject>Carbohydrate</subject><subject>Carbohydrate Metabolism</subject><subject>carbon sinks</subject><subject>Daktulosphaira vitifoliae</subject><subject>gene expression</subject><subject>Gene Expression Profiling</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>genes</subject><subject>glucose 6-phosphate</subject><subject>glucose transporters</subject><subject>Grapevine</subject><subject>Hemiptera - physiology</subject><subject>Hemiptera - ultrastructure</subject><subject>Host-Parasite Interactions</subject><subject>meristems</subject><subject>nutrients</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>osmotic stress</subject><subject>Phylloxera</subject><subject>plant organs</subject><subject>plant proteins</subject><subject>plant response</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - metabolism</subject><subject>Plant Roots - parasitology</subject><subject>Plant Roots - ultrastructure</subject><subject>Plant sink</subject><subject>Plant Tumors - genetics</subject><subject>Plant Tumors - parasitology</subject><subject>Primary metabolism</subject><subject>Root gall</subject><subject>root galls</subject><subject>roots</subject><subject>starch</subject><subject>Starch - metabolism</subject><subject>sucrose</subject><subject>tonoplast</subject><subject>transcription (genetics)</subject><subject>Vitis</subject><subject>Vitis - genetics</subject><subject>Vitis - metabolism</subject><subject>Vitis - parasitology</subject><subject>Vitis - ultrastructure</subject><issn>0168-9452</issn><issn>1873-2259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFksFu1DAQhi0EotvCK1Q-bg8bHCdOnAsCtRSQKsEBuFoTZ7Lx4sTB9m7ZF-pz4mXbCk49WZa__5_xzE_Iec6ynOXVm002W5hi0CbjLBcZ4xlj_BlZ5LIuVpyL5jlZJFCumlLwE3IawoYlQoj6JTnhQrJSMrkgd1-HvbXuN3qgyyv4GbfWhXkAk-47E03vrAGk1ybq4YKCjegDjQNSDb51w77zEJGOGKFNZBipmah3LtI1WJtIlzTW3ZppfVS5cYZoWosJTF6go3ETvTVxoGsPM-7MhHT5I1UONIQ5u_jrFl6RFz3YgK_vzzPy_frDt8tPq5svHz9fvr9ZacHKuCq7vGHYIO9rKaED0etKdwC15k1dNk0jRZlmI9q-ZwXHnutaFNiKjnVl3xZlcUbeHn3nbTtip3GKHqyavRnB75UDo_5_mcyg1m6nykLKojwYLO8NvPu1xRDVaIJGm5aFbhtULouqEnVRF0-jVVU1sq5EntDqiGrvQvDYP3aUM3XIg9qohzyoQx4U4yptOwnP__3Po-whAAl4dwQwTXVn0KtkgZPGznjUUXXOPFXjDwkM0AI</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Griesser, Michaela</creator><creator>Lawo, Nora Caroline</creator><creator>Crespo-Martinez, Sara</creator><creator>Schoedl-Hummel, Katharina</creator><creator>Wieczorek, Krzysztof</creator><creator>Gorecka, Miroslawa</creator><creator>Liebner, Falk</creator><creator>Zweckmair, Thomas</creator><creator>Stralis Pavese, Nancy</creator><creator>Kreil, David</creator><creator>Forneck, Astrid</creator><general>Elsevier Ireland Ltd</general><general>Elsevier Ireland</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>201505</creationdate><title>Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots</title><author>Griesser, Michaela ; Lawo, Nora Caroline ; Crespo-Martinez, Sara ; Schoedl-Hummel, Katharina ; Wieczorek, Krzysztof ; Gorecka, Miroslawa ; Liebner, Falk ; Zweckmair, Thomas ; Stralis Pavese, Nancy ; Kreil, David ; Forneck, Astrid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-4d190e9e2f788ada5fc6cdaa7c29749998542255bff032ef2c753eb5d0d4fb343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>biosynthesis</topic><topic>Carbohydrate</topic><topic>Carbohydrate Metabolism</topic><topic>carbon sinks</topic><topic>Daktulosphaira vitifoliae</topic><topic>gene expression</topic><topic>Gene Expression Profiling</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>genes</topic><topic>glucose 6-phosphate</topic><topic>glucose transporters</topic><topic>Grapevine</topic><topic>Hemiptera - physiology</topic><topic>Hemiptera - ultrastructure</topic><topic>Host-Parasite Interactions</topic><topic>meristems</topic><topic>nutrients</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>osmotic stress</topic><topic>Phylloxera</topic><topic>plant organs</topic><topic>plant proteins</topic><topic>plant response</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - metabolism</topic><topic>Plant Roots - parasitology</topic><topic>Plant Roots - ultrastructure</topic><topic>Plant sink</topic><topic>Plant Tumors - genetics</topic><topic>Plant Tumors - parasitology</topic><topic>Primary metabolism</topic><topic>Root gall</topic><topic>root galls</topic><topic>roots</topic><topic>starch</topic><topic>Starch - metabolism</topic><topic>sucrose</topic><topic>tonoplast</topic><topic>transcription (genetics)</topic><topic>Vitis</topic><topic>Vitis - genetics</topic><topic>Vitis - metabolism</topic><topic>Vitis - parasitology</topic><topic>Vitis - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griesser, Michaela</creatorcontrib><creatorcontrib>Lawo, Nora Caroline</creatorcontrib><creatorcontrib>Crespo-Martinez, Sara</creatorcontrib><creatorcontrib>Schoedl-Hummel, Katharina</creatorcontrib><creatorcontrib>Wieczorek, Krzysztof</creatorcontrib><creatorcontrib>Gorecka, Miroslawa</creatorcontrib><creatorcontrib>Liebner, Falk</creatorcontrib><creatorcontrib>Zweckmair, Thomas</creatorcontrib><creatorcontrib>Stralis Pavese, Nancy</creatorcontrib><creatorcontrib>Kreil, David</creatorcontrib><creatorcontrib>Forneck, Astrid</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant science (Limerick)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griesser, Michaela</au><au>Lawo, Nora Caroline</au><au>Crespo-Martinez, Sara</au><au>Schoedl-Hummel, Katharina</au><au>Wieczorek, Krzysztof</au><au>Gorecka, Miroslawa</au><au>Liebner, Falk</au><au>Zweckmair, Thomas</au><au>Stralis Pavese, Nancy</au><au>Kreil, David</au><au>Forneck, Astrid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots</atitle><jtitle>Plant science (Limerick)</jtitle><addtitle>Plant Sci</addtitle><date>2015-05</date><risdate>2015</risdate><volume>234</volume><spage>38</spage><epage>49</epage><pages>38-49</pages><issn>0168-9452</issn><eissn>1873-2259</eissn><abstract>•Sucrose is transported symplastically towards developing and growing nodosities.•Starch is accumulated and metabolized during nodosities growth and development.•Nodosity formation has systemic effects on non-infected root tips of phylloxerated plants.•Gall formation reprograms processes of the secondary metabolism as demonstrated transciptionally. Gall forming phylloxera may compete for nutrients with meristematic tissues and develop heterotrophic structures that act as carbon sinks. In this work, we studied the underlying starch metabolism, sink-source translocation of soluble sugars towards and within root galls. We demonstrated that nodosities store carbohydrates by starch accumulation and monitored the expression of genes involved in the starch metabolic. Thereby we proved that the nodosity is symplastically connected to the source tissues through its development and that the starch metabolism is significantly affected to synthesize and degrade starch within the gall. Genes required for starch biosynthesis and degradation are up-regulated. Among the carbohydrate transporters the expression of a glucose-6-phosphate translocater, one sucrose transporter and two SWEET proteins were increases, whereas hexose transporters, tonoplast monosaccharide transporter and Erd6-like sugar transporters were decreased. We found general evidence for plant response to osmotic stress in the nodosity as previously suggested for gall induction processes. We conclude that nodosities are heterogenous plant organs that accumulate starch to serve as temporary storage structure that is gradually withdrawn by phylloxera. Phylloxera transcriptionally reprograms gall tissues beyond primary metabolism and included downstream secondary processes, including response to osmotic stress.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>25804808</pmid><doi>10.1016/j.plantsci.2015.02.002</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9452
ispartof Plant science (Limerick), 2015-05, Vol.234, p.38-49
issn 0168-9452
1873-2259
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4388344
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
biosynthesis
Carbohydrate
Carbohydrate Metabolism
carbon sinks
Daktulosphaira vitifoliae
gene expression
Gene Expression Profiling
gene expression regulation
Gene Expression Regulation, Plant
genes
glucose 6-phosphate
glucose transporters
Grapevine
Hemiptera - physiology
Hemiptera - ultrastructure
Host-Parasite Interactions
meristems
nutrients
Oligonucleotide Array Sequence Analysis
osmotic stress
Phylloxera
plant organs
plant proteins
plant response
Plant Roots - genetics
Plant Roots - metabolism
Plant Roots - parasitology
Plant Roots - ultrastructure
Plant sink
Plant Tumors - genetics
Plant Tumors - parasitology
Primary metabolism
Root gall
root galls
roots
starch
Starch - metabolism
sucrose
tonoplast
transcription (genetics)
Vitis
Vitis - genetics
Vitis - metabolism
Vitis - parasitology
Vitis - ultrastructure
title Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phylloxera%20(Daktulosphaira%20vitifoliae%20Fitch)%20alters%20the%20carbohydrate%20metabolism%20in%20root%20galls%20to%20allowing%20the%20compatible%20interaction%20with%20grapevine%20(Vitis%20ssp.)%20roots&rft.jtitle=Plant%20science%20(Limerick)&rft.au=Griesser,%20Michaela&rft.date=2015-05&rft.volume=234&rft.spage=38&rft.epage=49&rft.pages=38-49&rft.issn=0168-9452&rft.eissn=1873-2259&rft_id=info:doi/10.1016/j.plantsci.2015.02.002&rft_dat=%3Cproquest_pubme%3E1836657373%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666987651&rft_id=info:pmid/25804808&rft_els_id=S0168945215000382&rfr_iscdi=true