Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots
•Sucrose is transported symplastically towards developing and growing nodosities.•Starch is accumulated and metabolized during nodosities growth and development.•Nodosity formation has systemic effects on non-infected root tips of phylloxerated plants.•Gall formation reprograms processes of the seco...
Gespeichert in:
Veröffentlicht in: | Plant science (Limerick) 2015-05, Vol.234, p.38-49 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | |
container_start_page | 38 |
container_title | Plant science (Limerick) |
container_volume | 234 |
creator | Griesser, Michaela Lawo, Nora Caroline Crespo-Martinez, Sara Schoedl-Hummel, Katharina Wieczorek, Krzysztof Gorecka, Miroslawa Liebner, Falk Zweckmair, Thomas Stralis Pavese, Nancy Kreil, David Forneck, Astrid |
description | •Sucrose is transported symplastically towards developing and growing nodosities.•Starch is accumulated and metabolized during nodosities growth and development.•Nodosity formation has systemic effects on non-infected root tips of phylloxerated plants.•Gall formation reprograms processes of the secondary metabolism as demonstrated transciptionally.
Gall forming phylloxera may compete for nutrients with meristematic tissues and develop heterotrophic structures that act as carbon sinks. In this work, we studied the underlying starch metabolism, sink-source translocation of soluble sugars towards and within root galls. We demonstrated that nodosities store carbohydrates by starch accumulation and monitored the expression of genes involved in the starch metabolic. Thereby we proved that the nodosity is symplastically connected to the source tissues through its development and that the starch metabolism is significantly affected to synthesize and degrade starch within the gall. Genes required for starch biosynthesis and degradation are up-regulated. Among the carbohydrate transporters the expression of a glucose-6-phosphate translocater, one sucrose transporter and two SWEET proteins were increases, whereas hexose transporters, tonoplast monosaccharide transporter and Erd6-like sugar transporters were decreased. We found general evidence for plant response to osmotic stress in the nodosity as previously suggested for gall induction processes. We conclude that nodosities are heterogenous plant organs that accumulate starch to serve as temporary storage structure that is gradually withdrawn by phylloxera. Phylloxera transcriptionally reprograms gall tissues beyond primary metabolism and included downstream secondary processes, including response to osmotic stress. |
doi_str_mv | 10.1016/j.plantsci.2015.02.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4388344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168945215000382</els_id><sourcerecordid>1836657373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-4d190e9e2f788ada5fc6cdaa7c29749998542255bff032ef2c753eb5d0d4fb343</originalsourceid><addsrcrecordid>eNqFksFu1DAQhi0EotvCK1Q-bg8bHCdOnAsCtRSQKsEBuFoTZ7Lx4sTB9m7ZF-pz4mXbCk49WZa__5_xzE_Iec6ynOXVm002W5hi0CbjLBcZ4xlj_BlZ5LIuVpyL5jlZJFCumlLwE3IawoYlQoj6JTnhQrJSMrkgd1-HvbXuN3qgyyv4GbfWhXkAk-47E03vrAGk1ybq4YKCjegDjQNSDb51w77zEJGOGKFNZBipmah3LtI1WJtIlzTW3ZppfVS5cYZoWosJTF6go3ETvTVxoGsPM-7MhHT5I1UONIQ5u_jrFl6RFz3YgK_vzzPy_frDt8tPq5svHz9fvr9ZacHKuCq7vGHYIO9rKaED0etKdwC15k1dNk0jRZlmI9q-ZwXHnutaFNiKjnVl3xZlcUbeHn3nbTtip3GKHqyavRnB75UDo_5_mcyg1m6nykLKojwYLO8NvPu1xRDVaIJGm5aFbhtULouqEnVRF0-jVVU1sq5EntDqiGrvQvDYP3aUM3XIg9qohzyoQx4U4yptOwnP__3Po-whAAl4dwQwTXVn0KtkgZPGznjUUXXOPFXjDwkM0AI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666987651</pqid></control><display><type>article</type><title>Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Griesser, Michaela ; Lawo, Nora Caroline ; Crespo-Martinez, Sara ; Schoedl-Hummel, Katharina ; Wieczorek, Krzysztof ; Gorecka, Miroslawa ; Liebner, Falk ; Zweckmair, Thomas ; Stralis Pavese, Nancy ; Kreil, David ; Forneck, Astrid</creator><creatorcontrib>Griesser, Michaela ; Lawo, Nora Caroline ; Crespo-Martinez, Sara ; Schoedl-Hummel, Katharina ; Wieczorek, Krzysztof ; Gorecka, Miroslawa ; Liebner, Falk ; Zweckmair, Thomas ; Stralis Pavese, Nancy ; Kreil, David ; Forneck, Astrid</creatorcontrib><description>•Sucrose is transported symplastically towards developing and growing nodosities.•Starch is accumulated and metabolized during nodosities growth and development.•Nodosity formation has systemic effects on non-infected root tips of phylloxerated plants.•Gall formation reprograms processes of the secondary metabolism as demonstrated transciptionally.
Gall forming phylloxera may compete for nutrients with meristematic tissues and develop heterotrophic structures that act as carbon sinks. In this work, we studied the underlying starch metabolism, sink-source translocation of soluble sugars towards and within root galls. We demonstrated that nodosities store carbohydrates by starch accumulation and monitored the expression of genes involved in the starch metabolic. Thereby we proved that the nodosity is symplastically connected to the source tissues through its development and that the starch metabolism is significantly affected to synthesize and degrade starch within the gall. Genes required for starch biosynthesis and degradation are up-regulated. Among the carbohydrate transporters the expression of a glucose-6-phosphate translocater, one sucrose transporter and two SWEET proteins were increases, whereas hexose transporters, tonoplast monosaccharide transporter and Erd6-like sugar transporters were decreased. We found general evidence for plant response to osmotic stress in the nodosity as previously suggested for gall induction processes. We conclude that nodosities are heterogenous plant organs that accumulate starch to serve as temporary storage structure that is gradually withdrawn by phylloxera. Phylloxera transcriptionally reprograms gall tissues beyond primary metabolism and included downstream secondary processes, including response to osmotic stress.</description><identifier>ISSN: 0168-9452</identifier><identifier>EISSN: 1873-2259</identifier><identifier>DOI: 10.1016/j.plantsci.2015.02.002</identifier><identifier>PMID: 25804808</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Animals ; biosynthesis ; Carbohydrate ; Carbohydrate Metabolism ; carbon sinks ; Daktulosphaira vitifoliae ; gene expression ; Gene Expression Profiling ; gene expression regulation ; Gene Expression Regulation, Plant ; genes ; glucose 6-phosphate ; glucose transporters ; Grapevine ; Hemiptera - physiology ; Hemiptera - ultrastructure ; Host-Parasite Interactions ; meristems ; nutrients ; Oligonucleotide Array Sequence Analysis ; osmotic stress ; Phylloxera ; plant organs ; plant proteins ; plant response ; Plant Roots - genetics ; Plant Roots - metabolism ; Plant Roots - parasitology ; Plant Roots - ultrastructure ; Plant sink ; Plant Tumors - genetics ; Plant Tumors - parasitology ; Primary metabolism ; Root gall ; root galls ; roots ; starch ; Starch - metabolism ; sucrose ; tonoplast ; transcription (genetics) ; Vitis ; Vitis - genetics ; Vitis - metabolism ; Vitis - parasitology ; Vitis - ultrastructure</subject><ispartof>Plant science (Limerick), 2015-05, Vol.234, p.38-49</ispartof><rights>2015 The Authors</rights><rights>Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.</rights><rights>2015 The Authors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-4d190e9e2f788ada5fc6cdaa7c29749998542255bff032ef2c753eb5d0d4fb343</citedby><cites>FETCH-LOGICAL-c504t-4d190e9e2f788ada5fc6cdaa7c29749998542255bff032ef2c753eb5d0d4fb343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.plantsci.2015.02.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25804808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Griesser, Michaela</creatorcontrib><creatorcontrib>Lawo, Nora Caroline</creatorcontrib><creatorcontrib>Crespo-Martinez, Sara</creatorcontrib><creatorcontrib>Schoedl-Hummel, Katharina</creatorcontrib><creatorcontrib>Wieczorek, Krzysztof</creatorcontrib><creatorcontrib>Gorecka, Miroslawa</creatorcontrib><creatorcontrib>Liebner, Falk</creatorcontrib><creatorcontrib>Zweckmair, Thomas</creatorcontrib><creatorcontrib>Stralis Pavese, Nancy</creatorcontrib><creatorcontrib>Kreil, David</creatorcontrib><creatorcontrib>Forneck, Astrid</creatorcontrib><title>Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots</title><title>Plant science (Limerick)</title><addtitle>Plant Sci</addtitle><description>•Sucrose is transported symplastically towards developing and growing nodosities.•Starch is accumulated and metabolized during nodosities growth and development.•Nodosity formation has systemic effects on non-infected root tips of phylloxerated plants.•Gall formation reprograms processes of the secondary metabolism as demonstrated transciptionally.
Gall forming phylloxera may compete for nutrients with meristematic tissues and develop heterotrophic structures that act as carbon sinks. In this work, we studied the underlying starch metabolism, sink-source translocation of soluble sugars towards and within root galls. We demonstrated that nodosities store carbohydrates by starch accumulation and monitored the expression of genes involved in the starch metabolic. Thereby we proved that the nodosity is symplastically connected to the source tissues through its development and that the starch metabolism is significantly affected to synthesize and degrade starch within the gall. Genes required for starch biosynthesis and degradation are up-regulated. Among the carbohydrate transporters the expression of a glucose-6-phosphate translocater, one sucrose transporter and two SWEET proteins were increases, whereas hexose transporters, tonoplast monosaccharide transporter and Erd6-like sugar transporters were decreased. We found general evidence for plant response to osmotic stress in the nodosity as previously suggested for gall induction processes. We conclude that nodosities are heterogenous plant organs that accumulate starch to serve as temporary storage structure that is gradually withdrawn by phylloxera. Phylloxera transcriptionally reprograms gall tissues beyond primary metabolism and included downstream secondary processes, including response to osmotic stress.</description><subject>Animals</subject><subject>biosynthesis</subject><subject>Carbohydrate</subject><subject>Carbohydrate Metabolism</subject><subject>carbon sinks</subject><subject>Daktulosphaira vitifoliae</subject><subject>gene expression</subject><subject>Gene Expression Profiling</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>genes</subject><subject>glucose 6-phosphate</subject><subject>glucose transporters</subject><subject>Grapevine</subject><subject>Hemiptera - physiology</subject><subject>Hemiptera - ultrastructure</subject><subject>Host-Parasite Interactions</subject><subject>meristems</subject><subject>nutrients</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>osmotic stress</subject><subject>Phylloxera</subject><subject>plant organs</subject><subject>plant proteins</subject><subject>plant response</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - metabolism</subject><subject>Plant Roots - parasitology</subject><subject>Plant Roots - ultrastructure</subject><subject>Plant sink</subject><subject>Plant Tumors - genetics</subject><subject>Plant Tumors - parasitology</subject><subject>Primary metabolism</subject><subject>Root gall</subject><subject>root galls</subject><subject>roots</subject><subject>starch</subject><subject>Starch - metabolism</subject><subject>sucrose</subject><subject>tonoplast</subject><subject>transcription (genetics)</subject><subject>Vitis</subject><subject>Vitis - genetics</subject><subject>Vitis - metabolism</subject><subject>Vitis - parasitology</subject><subject>Vitis - ultrastructure</subject><issn>0168-9452</issn><issn>1873-2259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFksFu1DAQhi0EotvCK1Q-bg8bHCdOnAsCtRSQKsEBuFoTZ7Lx4sTB9m7ZF-pz4mXbCk49WZa__5_xzE_Iec6ynOXVm002W5hi0CbjLBcZ4xlj_BlZ5LIuVpyL5jlZJFCumlLwE3IawoYlQoj6JTnhQrJSMrkgd1-HvbXuN3qgyyv4GbfWhXkAk-47E03vrAGk1ybq4YKCjegDjQNSDb51w77zEJGOGKFNZBipmah3LtI1WJtIlzTW3ZppfVS5cYZoWosJTF6go3ETvTVxoGsPM-7MhHT5I1UONIQ5u_jrFl6RFz3YgK_vzzPy_frDt8tPq5svHz9fvr9ZacHKuCq7vGHYIO9rKaED0etKdwC15k1dNk0jRZlmI9q-ZwXHnutaFNiKjnVl3xZlcUbeHn3nbTtip3GKHqyavRnB75UDo_5_mcyg1m6nykLKojwYLO8NvPu1xRDVaIJGm5aFbhtULouqEnVRF0-jVVU1sq5EntDqiGrvQvDYP3aUM3XIg9qohzyoQx4U4yptOwnP__3Po-whAAl4dwQwTXVn0KtkgZPGznjUUXXOPFXjDwkM0AI</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Griesser, Michaela</creator><creator>Lawo, Nora Caroline</creator><creator>Crespo-Martinez, Sara</creator><creator>Schoedl-Hummel, Katharina</creator><creator>Wieczorek, Krzysztof</creator><creator>Gorecka, Miroslawa</creator><creator>Liebner, Falk</creator><creator>Zweckmair, Thomas</creator><creator>Stralis Pavese, Nancy</creator><creator>Kreil, David</creator><creator>Forneck, Astrid</creator><general>Elsevier Ireland Ltd</general><general>Elsevier Ireland</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>201505</creationdate><title>Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots</title><author>Griesser, Michaela ; Lawo, Nora Caroline ; Crespo-Martinez, Sara ; Schoedl-Hummel, Katharina ; Wieczorek, Krzysztof ; Gorecka, Miroslawa ; Liebner, Falk ; Zweckmair, Thomas ; Stralis Pavese, Nancy ; Kreil, David ; Forneck, Astrid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-4d190e9e2f788ada5fc6cdaa7c29749998542255bff032ef2c753eb5d0d4fb343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>biosynthesis</topic><topic>Carbohydrate</topic><topic>Carbohydrate Metabolism</topic><topic>carbon sinks</topic><topic>Daktulosphaira vitifoliae</topic><topic>gene expression</topic><topic>Gene Expression Profiling</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>genes</topic><topic>glucose 6-phosphate</topic><topic>glucose transporters</topic><topic>Grapevine</topic><topic>Hemiptera - physiology</topic><topic>Hemiptera - ultrastructure</topic><topic>Host-Parasite Interactions</topic><topic>meristems</topic><topic>nutrients</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>osmotic stress</topic><topic>Phylloxera</topic><topic>plant organs</topic><topic>plant proteins</topic><topic>plant response</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - metabolism</topic><topic>Plant Roots - parasitology</topic><topic>Plant Roots - ultrastructure</topic><topic>Plant sink</topic><topic>Plant Tumors - genetics</topic><topic>Plant Tumors - parasitology</topic><topic>Primary metabolism</topic><topic>Root gall</topic><topic>root galls</topic><topic>roots</topic><topic>starch</topic><topic>Starch - metabolism</topic><topic>sucrose</topic><topic>tonoplast</topic><topic>transcription (genetics)</topic><topic>Vitis</topic><topic>Vitis - genetics</topic><topic>Vitis - metabolism</topic><topic>Vitis - parasitology</topic><topic>Vitis - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griesser, Michaela</creatorcontrib><creatorcontrib>Lawo, Nora Caroline</creatorcontrib><creatorcontrib>Crespo-Martinez, Sara</creatorcontrib><creatorcontrib>Schoedl-Hummel, Katharina</creatorcontrib><creatorcontrib>Wieczorek, Krzysztof</creatorcontrib><creatorcontrib>Gorecka, Miroslawa</creatorcontrib><creatorcontrib>Liebner, Falk</creatorcontrib><creatorcontrib>Zweckmair, Thomas</creatorcontrib><creatorcontrib>Stralis Pavese, Nancy</creatorcontrib><creatorcontrib>Kreil, David</creatorcontrib><creatorcontrib>Forneck, Astrid</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant science (Limerick)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griesser, Michaela</au><au>Lawo, Nora Caroline</au><au>Crespo-Martinez, Sara</au><au>Schoedl-Hummel, Katharina</au><au>Wieczorek, Krzysztof</au><au>Gorecka, Miroslawa</au><au>Liebner, Falk</au><au>Zweckmair, Thomas</au><au>Stralis Pavese, Nancy</au><au>Kreil, David</au><au>Forneck, Astrid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots</atitle><jtitle>Plant science (Limerick)</jtitle><addtitle>Plant Sci</addtitle><date>2015-05</date><risdate>2015</risdate><volume>234</volume><spage>38</spage><epage>49</epage><pages>38-49</pages><issn>0168-9452</issn><eissn>1873-2259</eissn><abstract>•Sucrose is transported symplastically towards developing and growing nodosities.•Starch is accumulated and metabolized during nodosities growth and development.•Nodosity formation has systemic effects on non-infected root tips of phylloxerated plants.•Gall formation reprograms processes of the secondary metabolism as demonstrated transciptionally.
Gall forming phylloxera may compete for nutrients with meristematic tissues and develop heterotrophic structures that act as carbon sinks. In this work, we studied the underlying starch metabolism, sink-source translocation of soluble sugars towards and within root galls. We demonstrated that nodosities store carbohydrates by starch accumulation and monitored the expression of genes involved in the starch metabolic. Thereby we proved that the nodosity is symplastically connected to the source tissues through its development and that the starch metabolism is significantly affected to synthesize and degrade starch within the gall. Genes required for starch biosynthesis and degradation are up-regulated. Among the carbohydrate transporters the expression of a glucose-6-phosphate translocater, one sucrose transporter and two SWEET proteins were increases, whereas hexose transporters, tonoplast monosaccharide transporter and Erd6-like sugar transporters were decreased. We found general evidence for plant response to osmotic stress in the nodosity as previously suggested for gall induction processes. We conclude that nodosities are heterogenous plant organs that accumulate starch to serve as temporary storage structure that is gradually withdrawn by phylloxera. Phylloxera transcriptionally reprograms gall tissues beyond primary metabolism and included downstream secondary processes, including response to osmotic stress.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>25804808</pmid><doi>10.1016/j.plantsci.2015.02.002</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9452 |
ispartof | Plant science (Limerick), 2015-05, Vol.234, p.38-49 |
issn | 0168-9452 1873-2259 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4388344 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals biosynthesis Carbohydrate Carbohydrate Metabolism carbon sinks Daktulosphaira vitifoliae gene expression Gene Expression Profiling gene expression regulation Gene Expression Regulation, Plant genes glucose 6-phosphate glucose transporters Grapevine Hemiptera - physiology Hemiptera - ultrastructure Host-Parasite Interactions meristems nutrients Oligonucleotide Array Sequence Analysis osmotic stress Phylloxera plant organs plant proteins plant response Plant Roots - genetics Plant Roots - metabolism Plant Roots - parasitology Plant Roots - ultrastructure Plant sink Plant Tumors - genetics Plant Tumors - parasitology Primary metabolism Root gall root galls roots starch Starch - metabolism sucrose tonoplast transcription (genetics) Vitis Vitis - genetics Vitis - metabolism Vitis - parasitology Vitis - ultrastructure |
title | Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phylloxera%20(Daktulosphaira%20vitifoliae%20Fitch)%20alters%20the%20carbohydrate%20metabolism%20in%20root%20galls%20to%20allowing%20the%20compatible%20interaction%20with%20grapevine%20(Vitis%20ssp.)%20roots&rft.jtitle=Plant%20science%20(Limerick)&rft.au=Griesser,%20Michaela&rft.date=2015-05&rft.volume=234&rft.spage=38&rft.epage=49&rft.pages=38-49&rft.issn=0168-9452&rft.eissn=1873-2259&rft_id=info:doi/10.1016/j.plantsci.2015.02.002&rft_dat=%3Cproquest_pubme%3E1836657373%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666987651&rft_id=info:pmid/25804808&rft_els_id=S0168945215000382&rfr_iscdi=true |