Adeno-associated virus inverted terminal repeats stimulate gene editing

Advancements in genome editing have relied on technologies to specifically damage DNA which, in turn, stimulates DNA repair including homologous recombination (HR). As off-target concerns complicate the therapeutic translation of site-specific DNA endonucleases, an alternative strategy to stimulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene therapy 2015-02, Vol.22 (2), p.190-195
1. Verfasser: Hirsch, M L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue 2
container_start_page 190
container_title Gene therapy
container_volume 22
creator Hirsch, M L
description Advancements in genome editing have relied on technologies to specifically damage DNA which, in turn, stimulates DNA repair including homologous recombination (HR). As off-target concerns complicate the therapeutic translation of site-specific DNA endonucleases, an alternative strategy to stimulate gene editing based on fragile DNA was investigated. To do this, an episomal gene-editing reporter was generated by a disruptive insertion of the adeno-associated virus (AAV) inverted terminal repeat (ITR) into the egfp gene. Compared with a non-structured DNA control sequence, the ITR induced DNA damage as evidenced by increased gamma-H2AX and Mre11 foci formation. As local DNA damage stimulates HR, ITR-mediated gene editing was investigated using DNA oligonucleotides as repair substrates. The AAV ITR stimulated gene editing >1000-fold in a replication-independent manner and was not biased by the polarity of the repair oligonucleotide. Analysis of additional human DNA sequences demonstrated stimulation of gene editing to varying degrees. In particular, inverted yet not direct, Alu repeats induced gene editing, suggesting a role for DNA structure in the repair event. Collectively, the results demonstrate that inverted DNA repeats stimulate gene editing via double-strand break repair in an episomal context and allude to efficient gene editing of the human chromosome using fragile DNA sequences.
doi_str_mv 10.1038/gt.2014.109
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4388141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A411652914</galeid><sourcerecordid>A411652914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c709t-b2d82185d0c97f2b7a2565101f13156ee2e83c47832f35a9d055f4a9731debfe3</originalsourceid><addsrcrecordid>eNqN0l2L1DAUBuAiiruuXnkvBUEU7ZiTrzY3wrDourAg-HEdMu1pJ0ubzCbpoP_eDLMuM7KI9KKc5MmbNjlF8RzIAghr3g9pQQnwXKgHxSnwWlaCS_qwOCVKqqoG2pwUT2K8JoTwuqGPixMqBGFSidPiYtmh85WJ0bfWJOzKrQ1zLK3bYtiVCcNknRnLgBs0KZYx2WkeMy0HdFhiZ5N1w9PiUW_GiM9u32fFj08fv59_rq6-XFyeL6-qtiYqVSvaNRQa0ZFW1T1d1YYKKYBADwyERKTYsDZ_JaM9E0Z1RIieG1Uz6HDVIzsrPuxzN_Nqwq5Fl4IZ9SbYyYRf2hurj2ecXevBbzVnTQMccsDr24Dgb2aMSU82tjiOxqGfowYpOSWKyv-hgnIhQNSZvvyLXvs55GOLmjIGktU1l_9SOQuYFAoOsgYzorau9_lH2t3Weslht6kCntXiHpWfDifbeoe9zeNHC94cLcgm4c80mDlGffnt67F9dWDXaMa0jn6ck_UuHsO3e9gGH2PA_u4mgOhdd-oh6V135kJl_eLw8u7sn3bM4N0exDzlBgwHB3RP3m_FwumZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651365917</pqid></control><display><type>article</type><title>Adeno-associated virus inverted terminal repeats stimulate gene editing</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hirsch, M L</creator><creatorcontrib>Hirsch, M L</creatorcontrib><description>Advancements in genome editing have relied on technologies to specifically damage DNA which, in turn, stimulates DNA repair including homologous recombination (HR). As off-target concerns complicate the therapeutic translation of site-specific DNA endonucleases, an alternative strategy to stimulate gene editing based on fragile DNA was investigated. To do this, an episomal gene-editing reporter was generated by a disruptive insertion of the adeno-associated virus (AAV) inverted terminal repeat (ITR) into the egfp gene. Compared with a non-structured DNA control sequence, the ITR induced DNA damage as evidenced by increased gamma-H2AX and Mre11 foci formation. As local DNA damage stimulates HR, ITR-mediated gene editing was investigated using DNA oligonucleotides as repair substrates. The AAV ITR stimulated gene editing &gt;1000-fold in a replication-independent manner and was not biased by the polarity of the repair oligonucleotide. Analysis of additional human DNA sequences demonstrated stimulation of gene editing to varying degrees. In particular, inverted yet not direct, Alu repeats induced gene editing, suggesting a role for DNA structure in the repair event. Collectively, the results demonstrate that inverted DNA repeats stimulate gene editing via double-strand break repair in an episomal context and allude to efficient gene editing of the human chromosome using fragile DNA sequences.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/gt.2014.109</identifier><identifier>PMID: 25503695</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/44 ; 14/63 ; 38/22 ; 38/23 ; 42/41 ; 45/29 ; 631/208/68 ; Adeno-associated virus ; Adenoviruses ; Base Sequence ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Deoxyribonucleic acid ; Dependovirus - genetics ; Dependoviruses ; DNA ; DNA Breaks, Double-Stranded ; DNA damage ; DNA Repair ; DNA structure ; Double-strand break repair ; Gene Expression ; Gene Therapy ; Genes ; Genes, Reporter ; Genes, Viral ; Genetic aspects ; Genetic Engineering ; Genetic research ; Genome editing ; Genomes ; Green Fluorescent Proteins - biosynthesis ; Green Fluorescent Proteins - genetics ; Health aspects ; HEK293 Cells ; Homologous recombination ; Human Genetics ; Humans ; Insertion ; Inverted Repeat Sequences ; Molecular Sequence Data ; MRE11 protein ; Nanotechnology ; Nucleotide sequence ; Oligonucleotides ; Polarity ; short-communication ; Terminal Repeat Sequences</subject><ispartof>Gene therapy, 2015-02, Vol.22 (2), p.190-195</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2015</rights><rights>Macmillan Publishers Limited 2015.</rights><rights>2015 Macmillan Publishers Limited All rights reserved 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c709t-b2d82185d0c97f2b7a2565101f13156ee2e83c47832f35a9d055f4a9731debfe3</citedby><cites>FETCH-LOGICAL-c709t-b2d82185d0c97f2b7a2565101f13156ee2e83c47832f35a9d055f4a9731debfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/gt.2014.109$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/gt.2014.109$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25503695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirsch, M L</creatorcontrib><title>Adeno-associated virus inverted terminal repeats stimulate gene editing</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>Advancements in genome editing have relied on technologies to specifically damage DNA which, in turn, stimulates DNA repair including homologous recombination (HR). As off-target concerns complicate the therapeutic translation of site-specific DNA endonucleases, an alternative strategy to stimulate gene editing based on fragile DNA was investigated. To do this, an episomal gene-editing reporter was generated by a disruptive insertion of the adeno-associated virus (AAV) inverted terminal repeat (ITR) into the egfp gene. Compared with a non-structured DNA control sequence, the ITR induced DNA damage as evidenced by increased gamma-H2AX and Mre11 foci formation. As local DNA damage stimulates HR, ITR-mediated gene editing was investigated using DNA oligonucleotides as repair substrates. The AAV ITR stimulated gene editing &gt;1000-fold in a replication-independent manner and was not biased by the polarity of the repair oligonucleotide. Analysis of additional human DNA sequences demonstrated stimulation of gene editing to varying degrees. In particular, inverted yet not direct, Alu repeats induced gene editing, suggesting a role for DNA structure in the repair event. Collectively, the results demonstrate that inverted DNA repeats stimulate gene editing via double-strand break repair in an episomal context and allude to efficient gene editing of the human chromosome using fragile DNA sequences.</description><subject>13/44</subject><subject>14/63</subject><subject>38/22</subject><subject>38/23</subject><subject>42/41</subject><subject>45/29</subject><subject>631/208/68</subject><subject>Adeno-associated virus</subject><subject>Adenoviruses</subject><subject>Base Sequence</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Deoxyribonucleic acid</subject><subject>Dependovirus - genetics</subject><subject>Dependoviruses</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA Repair</subject><subject>DNA structure</subject><subject>Double-strand break repair</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Genes</subject><subject>Genes, Reporter</subject><subject>Genes, Viral</subject><subject>Genetic aspects</subject><subject>Genetic Engineering</subject><subject>Genetic research</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Green Fluorescent Proteins - biosynthesis</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>Homologous recombination</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Insertion</subject><subject>Inverted Repeat Sequences</subject><subject>Molecular Sequence Data</subject><subject>MRE11 protein</subject><subject>Nanotechnology</subject><subject>Nucleotide sequence</subject><subject>Oligonucleotides</subject><subject>Polarity</subject><subject>short-communication</subject><subject>Terminal Repeat Sequences</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0l2L1DAUBuAiiruuXnkvBUEU7ZiTrzY3wrDourAg-HEdMu1pJ0ubzCbpoP_eDLMuM7KI9KKc5MmbNjlF8RzIAghr3g9pQQnwXKgHxSnwWlaCS_qwOCVKqqoG2pwUT2K8JoTwuqGPixMqBGFSidPiYtmh85WJ0bfWJOzKrQ1zLK3bYtiVCcNknRnLgBs0KZYx2WkeMy0HdFhiZ5N1w9PiUW_GiM9u32fFj08fv59_rq6-XFyeL6-qtiYqVSvaNRQa0ZFW1T1d1YYKKYBADwyERKTYsDZ_JaM9E0Z1RIieG1Uz6HDVIzsrPuxzN_Nqwq5Fl4IZ9SbYyYRf2hurj2ecXevBbzVnTQMccsDr24Dgb2aMSU82tjiOxqGfowYpOSWKyv-hgnIhQNSZvvyLXvs55GOLmjIGktU1l_9SOQuYFAoOsgYzorau9_lH2t3Weslht6kCntXiHpWfDifbeoe9zeNHC94cLcgm4c80mDlGffnt67F9dWDXaMa0jn6ck_UuHsO3e9gGH2PA_u4mgOhdd-oh6V135kJl_eLw8u7sn3bM4N0exDzlBgwHB3RP3m_FwumZ</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Hirsch, M L</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20150201</creationdate><title>Adeno-associated virus inverted terminal repeats stimulate gene editing</title><author>Hirsch, M L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c709t-b2d82185d0c97f2b7a2565101f13156ee2e83c47832f35a9d055f4a9731debfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/44</topic><topic>14/63</topic><topic>38/22</topic><topic>38/23</topic><topic>42/41</topic><topic>45/29</topic><topic>631/208/68</topic><topic>Adeno-associated virus</topic><topic>Adenoviruses</topic><topic>Base Sequence</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Deoxyribonucleic acid</topic><topic>Dependovirus - genetics</topic><topic>Dependoviruses</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA Repair</topic><topic>DNA structure</topic><topic>Double-strand break repair</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Genes</topic><topic>Genes, Reporter</topic><topic>Genes, Viral</topic><topic>Genetic aspects</topic><topic>Genetic Engineering</topic><topic>Genetic research</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Green Fluorescent Proteins - biosynthesis</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>Homologous recombination</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Insertion</topic><topic>Inverted Repeat Sequences</topic><topic>Molecular Sequence Data</topic><topic>MRE11 protein</topic><topic>Nanotechnology</topic><topic>Nucleotide sequence</topic><topic>Oligonucleotides</topic><topic>Polarity</topic><topic>short-communication</topic><topic>Terminal Repeat Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirsch, M L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirsch, M L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adeno-associated virus inverted terminal repeats stimulate gene editing</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>22</volume><issue>2</issue><spage>190</spage><epage>195</epage><pages>190-195</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>Advancements in genome editing have relied on technologies to specifically damage DNA which, in turn, stimulates DNA repair including homologous recombination (HR). As off-target concerns complicate the therapeutic translation of site-specific DNA endonucleases, an alternative strategy to stimulate gene editing based on fragile DNA was investigated. To do this, an episomal gene-editing reporter was generated by a disruptive insertion of the adeno-associated virus (AAV) inverted terminal repeat (ITR) into the egfp gene. Compared with a non-structured DNA control sequence, the ITR induced DNA damage as evidenced by increased gamma-H2AX and Mre11 foci formation. As local DNA damage stimulates HR, ITR-mediated gene editing was investigated using DNA oligonucleotides as repair substrates. The AAV ITR stimulated gene editing &gt;1000-fold in a replication-independent manner and was not biased by the polarity of the repair oligonucleotide. Analysis of additional human DNA sequences demonstrated stimulation of gene editing to varying degrees. In particular, inverted yet not direct, Alu repeats induced gene editing, suggesting a role for DNA structure in the repair event. Collectively, the results demonstrate that inverted DNA repeats stimulate gene editing via double-strand break repair in an episomal context and allude to efficient gene editing of the human chromosome using fragile DNA sequences.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25503695</pmid><doi>10.1038/gt.2014.109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-7128
ispartof Gene therapy, 2015-02, Vol.22 (2), p.190-195
issn 0969-7128
1476-5462
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4388141
source MEDLINE; Springer Nature - Complete Springer Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 13/44
14/63
38/22
38/23
42/41
45/29
631/208/68
Adeno-associated virus
Adenoviruses
Base Sequence
Biomedical and Life Sciences
Biomedicine
Cell Biology
Deoxyribonucleic acid
Dependovirus - genetics
Dependoviruses
DNA
DNA Breaks, Double-Stranded
DNA damage
DNA Repair
DNA structure
Double-strand break repair
Gene Expression
Gene Therapy
Genes
Genes, Reporter
Genes, Viral
Genetic aspects
Genetic Engineering
Genetic research
Genome editing
Genomes
Green Fluorescent Proteins - biosynthesis
Green Fluorescent Proteins - genetics
Health aspects
HEK293 Cells
Homologous recombination
Human Genetics
Humans
Insertion
Inverted Repeat Sequences
Molecular Sequence Data
MRE11 protein
Nanotechnology
Nucleotide sequence
Oligonucleotides
Polarity
short-communication
Terminal Repeat Sequences
title Adeno-associated virus inverted terminal repeats stimulate gene editing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adeno-associated%20virus%20inverted%20terminal%20repeats%20stimulate%20gene%20editing&rft.jtitle=Gene%20therapy&rft.au=Hirsch,%20M%20L&rft.date=2015-02-01&rft.volume=22&rft.issue=2&rft.spage=190&rft.epage=195&rft.pages=190-195&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/gt.2014.109&rft_dat=%3Cgale_pubme%3EA411652914%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651365917&rft_id=info:pmid/25503695&rft_galeid=A411652914&rfr_iscdi=true