A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila

Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2015-04, Vol.29 (7), p.760-771
Hauptverfasser: Gao, Jun-Li, Fan, Yu-Jie, Wang, Xiu-Ye, Zhang, Yu, Pu, Jia, Li, Liang, Shao, Wei, Zhan, Shuai, Hao, Jianjiang, Xu, Yong-Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 771
container_issue 7
container_start_page 760
container_title Genes & development
container_volume 29
creator Gao, Jun-Li
Fan, Yu-Jie
Wang, Xiu-Ye
Zhang, Yu
Pu, Jia
Li, Liang
Shao, Wei
Zhan, Shuai
Hao, Jianjiang
Xu, Yong-Zhen
description Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5' intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5' intron finds the 3' introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5' intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing.
doi_str_mv 10.1101/gad.258863.115
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4387717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1687680407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-df653a8392916477b2f60427ae4a71f2d8578dcc52ddf837e95ced4c5654d87e3</originalsourceid><addsrcrecordid>eNqNkc1LAzEQxYMotlavHmWPXrYmm8-9CKV-QlERPYc0ydbINlmTbcH_3pRq0ZunYZjfPN7MA-AUwTFCEF0slBlXVAiGc0_3wBBRUpeUcL4PhlDUsKwxqwfgKKV3CCGDjB2CQd7AghIyBC-TQgefbFxbUzjfx-CdLl5Rkfzzw1M5d944vyiS_VhZr23RxbAMvU1FH5VPZepapzeA88VVDCl0b65Vx-CgUW2yJ991BF5vrl-md-Xs8fZ-OpmVmlS4L03DKFYC11WNWHY8rxoGScWVJYqjpjKCcmG0ppUxjcDc1lRbQzRllBjBLR6By61ut5ovrdE2-1et7KJbqvgpg3Ly78S7N7kIa0mw4BzxLHD-LRBDPjD1cumStm2rvA2rJBETnAlI4H9QVguMBRQZHW9RnT-Som12jhCUm9RkTk1uU8s9zQtnv-_Y4T8x4S9ZYJQa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669833808</pqid></control><display><type>article</type><title>A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gao, Jun-Li ; Fan, Yu-Jie ; Wang, Xiu-Ye ; Zhang, Yu ; Pu, Jia ; Li, Liang ; Shao, Wei ; Zhan, Shuai ; Hao, Jianjiang ; Xu, Yong-Zhen</creator><creatorcontrib>Gao, Jun-Li ; Fan, Yu-Jie ; Wang, Xiu-Ye ; Zhang, Yu ; Pu, Jia ; Li, Liang ; Shao, Wei ; Zhan, Shuai ; Hao, Jianjiang ; Xu, Yong-Zhen</creatorcontrib><description>Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5' intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5' intron finds the 3' introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5' intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.258863.115</identifier><identifier>PMID: 25838544</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Amino Acid Motifs ; Animals ; Conserved Sequence - genetics ; DNA-Binding Proteins - genetics ; Drosophila ; Drosophila - genetics ; Drosophila Proteins - genetics ; Gene Expression Regulation, Developmental ; Introns - genetics ; Nematoda ; Research Papers ; RNA Splicing - genetics ; RNA, Small Nuclear - genetics ; RNA-Binding Proteins - genetics ; Trans-Splicing - genetics ; Trypanosoma</subject><ispartof>Genes &amp; development, 2015-04, Vol.29 (7), p.760-771</ispartof><rights>2015 Gao et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-df653a8392916477b2f60427ae4a71f2d8578dcc52ddf837e95ced4c5654d87e3</citedby><cites>FETCH-LOGICAL-c423t-df653a8392916477b2f60427ae4a71f2d8578dcc52ddf837e95ced4c5654d87e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387717/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387717/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25838544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Jun-Li</creatorcontrib><creatorcontrib>Fan, Yu-Jie</creatorcontrib><creatorcontrib>Wang, Xiu-Ye</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Pu, Jia</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Shao, Wei</creatorcontrib><creatorcontrib>Zhan, Shuai</creatorcontrib><creatorcontrib>Hao, Jianjiang</creatorcontrib><creatorcontrib>Xu, Yong-Zhen</creatorcontrib><title>A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila</title><title>Genes &amp; development</title><addtitle>Genes Dev</addtitle><description>Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5' intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5' intron finds the 3' introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5' intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing.</description><subject>Amino Acid Motifs</subject><subject>Animals</subject><subject>Conserved Sequence - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Introns - genetics</subject><subject>Nematoda</subject><subject>Research Papers</subject><subject>RNA Splicing - genetics</subject><subject>RNA, Small Nuclear - genetics</subject><subject>RNA-Binding Proteins - genetics</subject><subject>Trans-Splicing - genetics</subject><subject>Trypanosoma</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1LAzEQxYMotlavHmWPXrYmm8-9CKV-QlERPYc0ydbINlmTbcH_3pRq0ZunYZjfPN7MA-AUwTFCEF0slBlXVAiGc0_3wBBRUpeUcL4PhlDUsKwxqwfgKKV3CCGDjB2CQd7AghIyBC-TQgefbFxbUzjfx-CdLl5Rkfzzw1M5d944vyiS_VhZr23RxbAMvU1FH5VPZepapzeA88VVDCl0b65Vx-CgUW2yJ991BF5vrl-md-Xs8fZ-OpmVmlS4L03DKFYC11WNWHY8rxoGScWVJYqjpjKCcmG0ppUxjcDc1lRbQzRllBjBLR6By61ut5ovrdE2-1et7KJbqvgpg3Ly78S7N7kIa0mw4BzxLHD-LRBDPjD1cumStm2rvA2rJBETnAlI4H9QVguMBRQZHW9RnT-Som12jhCUm9RkTk1uU8s9zQtnv-_Y4T8x4S9ZYJQa</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Gao, Jun-Li</creator><creator>Fan, Yu-Jie</creator><creator>Wang, Xiu-Ye</creator><creator>Zhang, Yu</creator><creator>Pu, Jia</creator><creator>Li, Liang</creator><creator>Shao, Wei</creator><creator>Zhan, Shuai</creator><creator>Hao, Jianjiang</creator><creator>Xu, Yong-Zhen</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SS</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150401</creationdate><title>A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila</title><author>Gao, Jun-Li ; Fan, Yu-Jie ; Wang, Xiu-Ye ; Zhang, Yu ; Pu, Jia ; Li, Liang ; Shao, Wei ; Zhan, Shuai ; Hao, Jianjiang ; Xu, Yong-Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-df653a8392916477b2f60427ae4a71f2d8578dcc52ddf837e95ced4c5654d87e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Motifs</topic><topic>Animals</topic><topic>Conserved Sequence - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Introns - genetics</topic><topic>Nematoda</topic><topic>Research Papers</topic><topic>RNA Splicing - genetics</topic><topic>RNA, Small Nuclear - genetics</topic><topic>RNA-Binding Proteins - genetics</topic><topic>Trans-Splicing - genetics</topic><topic>Trypanosoma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jun-Li</creatorcontrib><creatorcontrib>Fan, Yu-Jie</creatorcontrib><creatorcontrib>Wang, Xiu-Ye</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Pu, Jia</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Shao, Wei</creatorcontrib><creatorcontrib>Zhan, Shuai</creatorcontrib><creatorcontrib>Hao, Jianjiang</creatorcontrib><creatorcontrib>Xu, Yong-Zhen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Jun-Li</au><au>Fan, Yu-Jie</au><au>Wang, Xiu-Ye</au><au>Zhang, Yu</au><au>Pu, Jia</au><au>Li, Liang</au><au>Shao, Wei</au><au>Zhan, Shuai</au><au>Hao, Jianjiang</au><au>Xu, Yong-Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila</atitle><jtitle>Genes &amp; development</jtitle><addtitle>Genes Dev</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>29</volume><issue>7</issue><spage>760</spage><epage>771</epage><pages>760-771</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5' intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5' intron finds the 3' introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5' intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>25838544</pmid><doi>10.1101/gad.258863.115</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-9369
ispartof Genes & development, 2015-04, Vol.29 (7), p.760-771
issn 0890-9369
1549-5477
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4387717
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Amino Acid Motifs
Animals
Conserved Sequence - genetics
DNA-Binding Proteins - genetics
Drosophila
Drosophila - genetics
Drosophila Proteins - genetics
Gene Expression Regulation, Developmental
Introns - genetics
Nematoda
Research Papers
RNA Splicing - genetics
RNA, Small Nuclear - genetics
RNA-Binding Proteins - genetics
Trans-Splicing - genetics
Trypanosoma
title A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20conserved%20intronic%20U1%20snRNP-binding%20sequence%20promotes%20trans-splicing%20in%20Drosophila&rft.jtitle=Genes%20&%20development&rft.au=Gao,%20Jun-Li&rft.date=2015-04-01&rft.volume=29&rft.issue=7&rft.spage=760&rft.epage=771&rft.pages=760-771&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.258863.115&rft_dat=%3Cproquest_pubme%3E1687680407%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669833808&rft_id=info:pmid/25838544&rfr_iscdi=true