P-REX1 creates a positive feedback loop to activate growth factor receptor, PI3K/AKT and MEK/ERK signaling in breast cancer
Phosphatidylinositol 3-kinase (PI3K) promotes cancer cell survival, migration, growth and proliferation by generating phosphatidylinositol 3,4,5-trisphosphate (PIP 3 ) in the inner leaflet of the plasma membrane. PIP 3 recruits pleckstrin homology domain-containing proteins to the membrane to activa...
Gespeichert in:
Veröffentlicht in: | Oncogene 2015-07, Vol.34 (30), p.3968-3976 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3976 |
---|---|
container_issue | 30 |
container_start_page | 3968 |
container_title | Oncogene |
container_volume | 34 |
creator | Dillon, L M Bean, J R Yang, W Shee, K Symonds, L K Balko, J M McDonald, W H Liu, S Gonzalez-Angulo, A M Mills, G B Arteaga, C L Miller, T W |
description | Phosphatidylinositol 3-kinase (PI3K) promotes cancer cell survival, migration, growth and proliferation by generating phosphatidylinositol 3,4,5-trisphosphate (PIP
3
) in the inner leaflet of the plasma membrane. PIP
3
recruits pleckstrin homology domain-containing proteins to the membrane to activate oncogenic signaling cascades. Anticancer therapeutics targeting the PI3K/AKT/mTOR (mammalian target of rapamycin) pathway are in clinical development. In a mass spectrometric screen to identify PIP
3
-regulated proteins in breast cancer cells, levels of the Rac activator PIP
3
-dependent Rac exchange factor-1 (P-REX1) increased in response to PI3K inhibition, and decreased upon loss of the PI3K antagonist phosphatase and tensin homolog (PTEN). P-REX1 mRNA and protein levels were positively correlated with ER expression, and inversely correlated with PI3K pathway activation in breast tumors as assessed by gene expression and phosphoproteomic analyses. P-REX1 increased activation of Rac1, PI3K/AKT and MEK/ERK signaling in a PTEN-independent manner, and promoted cell and tumor viability. Loss of P-REX1 or inhibition of Rac suppressed PI3K/AKT and MEK/ERK, and decreased viability. P-REX1 also promoted insulin-like growth factor-1 receptor activation, suggesting that P-REX1 provides positive feedback to activators upstream of PI3K. In support of a model where PIP
3
-driven P-REX1 promotes both PI3K/AKT and MEK/ERK signaling, high levels of P-REX1 mRNA (but not phospho-AKT or a transcriptomic signature of PI3K activation) were predictive of sensitivity to PI3K inhibitors among breast cancer cell lines. P-REX1 expression was highest in estrogen receptor-positive breast tumors compared with many other cancer subtypes, suggesting that neutralizing the P-REX1/Rac axis may provide a novel therapeutic approach to selectively abrogate oncogenic signaling in breast cancer cells. |
doi_str_mv | 10.1038/onc.2014.328 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4387124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A424253002</galeid><sourcerecordid>A424253002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c714t-9374a35f5442272e462e9d9a29f91f5c1739038d2c62928e63f610d3b8576dae3</originalsourceid><addsrcrecordid>eNp9ktFrFDEQxhdR7Fl981kCvvjQvUsmye7mRTjKqeUqllLBt5DLzm5T95Iz2auI_7w5rparFMlDwsxvvkkmX1G8ZnTKKG9mwdspUCamHJonxYSJuiqlVOJpMaFK0lIBh6PiRUo3lNJaUXheHIGERshGTorfF-Xl4hsjNqIZMRFDNiG50d0i6RDblbHfyRDChoyBGJvjmSJ9DD_Ha9LlQIgkosVNPpyQizO-nM2XV8T4lnxeLGeLyyVJrvdmcL4nzpNVbpNGYo23GF8WzzozJHx1tx8XXz8srk4_ledfPp6dzs9LWzMxlorXwnDZSSEAakBRAapWGVCdYp20rOYqD6IFW4GCBiveVYy2fNXIumoN8uPi_V53s12tsbXox2gGvYlubeIvHYzTDzPeXes-3GrBm5qByALv7gRi-LHFNOq1SxaHwXgM26RZDcDqBniT0bf_oDdhG_MAkgbOWcW4FOx_FKtUQ5v8nwdavRlQO9-FfDu7a63nAgRITilkavoIlVeLa2eDx87l-IOCk32BjSGliN39JBjVO0vpbCm9s5TOlsr4m8Pp3cN_PZSBcg-knPI9xoPHPCb4B9M40aw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698080148</pqid></control><display><type>article</type><title>P-REX1 creates a positive feedback loop to activate growth factor receptor, PI3K/AKT and MEK/ERK signaling in breast cancer</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dillon, L M ; Bean, J R ; Yang, W ; Shee, K ; Symonds, L K ; Balko, J M ; McDonald, W H ; Liu, S ; Gonzalez-Angulo, A M ; Mills, G B ; Arteaga, C L ; Miller, T W</creator><creatorcontrib>Dillon, L M ; Bean, J R ; Yang, W ; Shee, K ; Symonds, L K ; Balko, J M ; McDonald, W H ; Liu, S ; Gonzalez-Angulo, A M ; Mills, G B ; Arteaga, C L ; Miller, T W</creatorcontrib><description>Phosphatidylinositol 3-kinase (PI3K) promotes cancer cell survival, migration, growth and proliferation by generating phosphatidylinositol 3,4,5-trisphosphate (PIP
3
) in the inner leaflet of the plasma membrane. PIP
3
recruits pleckstrin homology domain-containing proteins to the membrane to activate oncogenic signaling cascades. Anticancer therapeutics targeting the PI3K/AKT/mTOR (mammalian target of rapamycin) pathway are in clinical development. In a mass spectrometric screen to identify PIP
3
-regulated proteins in breast cancer cells, levels of the Rac activator PIP
3
-dependent Rac exchange factor-1 (P-REX1) increased in response to PI3K inhibition, and decreased upon loss of the PI3K antagonist phosphatase and tensin homolog (PTEN). P-REX1 mRNA and protein levels were positively correlated with ER expression, and inversely correlated with PI3K pathway activation in breast tumors as assessed by gene expression and phosphoproteomic analyses. P-REX1 increased activation of Rac1, PI3K/AKT and MEK/ERK signaling in a PTEN-independent manner, and promoted cell and tumor viability. Loss of P-REX1 or inhibition of Rac suppressed PI3K/AKT and MEK/ERK, and decreased viability. P-REX1 also promoted insulin-like growth factor-1 receptor activation, suggesting that P-REX1 provides positive feedback to activators upstream of PI3K. In support of a model where PIP
3
-driven P-REX1 promotes both PI3K/AKT and MEK/ERK signaling, high levels of P-REX1 mRNA (but not phospho-AKT or a transcriptomic signature of PI3K activation) were predictive of sensitivity to PI3K inhibitors among breast cancer cell lines. P-REX1 expression was highest in estrogen receptor-positive breast tumors compared with many other cancer subtypes, suggesting that neutralizing the P-REX1/Rac axis may provide a novel therapeutic approach to selectively abrogate oncogenic signaling in breast cancer cells.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2014.328</identifier><identifier>PMID: 25284585</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>1-Phosphatidylinositol 3-kinase ; 631/67 ; 82/79 ; 96/1 ; 96/106 ; AKT protein ; Animals ; Apoptosis ; Breast cancer ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cell Biology ; Cell migration ; Cell Survival ; Cellular signal transduction ; Development and progression ; Estrogen receptors ; Extracellular signal-regulated kinase ; Feedback ; Feedback, Physiological ; Female ; Gene expression ; Genetic aspects ; Growth factors ; Guanine Nucleotide Exchange Factors - physiology ; Health aspects ; Homology ; Human Genetics ; Humans ; Insulin ; Insulin-like growth factor I ; Internal Medicine ; Kinases ; MAP Kinase Signaling System ; MCF-7 Cells ; Medicine ; Medicine & Public Health ; Mice, Inbred NOD ; Mice, SCID ; Mutation ; Neoplasm Transplantation ; Oncology ; original-article ; Phosphatidylinositol 3,4,5-triphosphate ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphotransferases ; Pleckstrin ; Properties ; Proto-Oncogene Proteins c-akt - metabolism ; PTEN protein ; rac GTP-Binding Proteins - metabolism ; Rac1 protein ; Rapamycin ; Receptor mechanisms ; Receptors, Growth Factor - metabolism ; Signal transduction ; Tensin ; TOR protein ; Tumor cell lines ; Tumors</subject><ispartof>Oncogene, 2015-07, Vol.34 (30), p.3968-3976</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 23, 2015</rights><rights>Macmillan Publishers Limited 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c714t-9374a35f5442272e462e9d9a29f91f5c1739038d2c62928e63f610d3b8576dae3</citedby><cites>FETCH-LOGICAL-c714t-9374a35f5442272e462e9d9a29f91f5c1739038d2c62928e63f610d3b8576dae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2014.328$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2014.328$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25284585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dillon, L M</creatorcontrib><creatorcontrib>Bean, J R</creatorcontrib><creatorcontrib>Yang, W</creatorcontrib><creatorcontrib>Shee, K</creatorcontrib><creatorcontrib>Symonds, L K</creatorcontrib><creatorcontrib>Balko, J M</creatorcontrib><creatorcontrib>McDonald, W H</creatorcontrib><creatorcontrib>Liu, S</creatorcontrib><creatorcontrib>Gonzalez-Angulo, A M</creatorcontrib><creatorcontrib>Mills, G B</creatorcontrib><creatorcontrib>Arteaga, C L</creatorcontrib><creatorcontrib>Miller, T W</creatorcontrib><title>P-REX1 creates a positive feedback loop to activate growth factor receptor, PI3K/AKT and MEK/ERK signaling in breast cancer</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Phosphatidylinositol 3-kinase (PI3K) promotes cancer cell survival, migration, growth and proliferation by generating phosphatidylinositol 3,4,5-trisphosphate (PIP
3
) in the inner leaflet of the plasma membrane. PIP
3
recruits pleckstrin homology domain-containing proteins to the membrane to activate oncogenic signaling cascades. Anticancer therapeutics targeting the PI3K/AKT/mTOR (mammalian target of rapamycin) pathway are in clinical development. In a mass spectrometric screen to identify PIP
3
-regulated proteins in breast cancer cells, levels of the Rac activator PIP
3
-dependent Rac exchange factor-1 (P-REX1) increased in response to PI3K inhibition, and decreased upon loss of the PI3K antagonist phosphatase and tensin homolog (PTEN). P-REX1 mRNA and protein levels were positively correlated with ER expression, and inversely correlated with PI3K pathway activation in breast tumors as assessed by gene expression and phosphoproteomic analyses. P-REX1 increased activation of Rac1, PI3K/AKT and MEK/ERK signaling in a PTEN-independent manner, and promoted cell and tumor viability. Loss of P-REX1 or inhibition of Rac suppressed PI3K/AKT and MEK/ERK, and decreased viability. P-REX1 also promoted insulin-like growth factor-1 receptor activation, suggesting that P-REX1 provides positive feedback to activators upstream of PI3K. In support of a model where PIP
3
-driven P-REX1 promotes both PI3K/AKT and MEK/ERK signaling, high levels of P-REX1 mRNA (but not phospho-AKT or a transcriptomic signature of PI3K activation) were predictive of sensitivity to PI3K inhibitors among breast cancer cell lines. P-REX1 expression was highest in estrogen receptor-positive breast tumors compared with many other cancer subtypes, suggesting that neutralizing the P-REX1/Rac axis may provide a novel therapeutic approach to selectively abrogate oncogenic signaling in breast cancer cells.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>631/67</subject><subject>82/79</subject><subject>96/1</subject><subject>96/106</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cell Biology</subject><subject>Cell migration</subject><subject>Cell Survival</subject><subject>Cellular signal transduction</subject><subject>Development and progression</subject><subject>Estrogen receptors</subject><subject>Extracellular signal-regulated kinase</subject><subject>Feedback</subject><subject>Feedback, Physiological</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Growth factors</subject><subject>Guanine Nucleotide Exchange Factors - physiology</subject><subject>Health aspects</subject><subject>Homology</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin-like growth factor I</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>MAP Kinase Signaling System</subject><subject>MCF-7 Cells</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Mutation</subject><subject>Neoplasm Transplantation</subject><subject>Oncology</subject><subject>original-article</subject><subject>Phosphatidylinositol 3,4,5-triphosphate</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphotransferases</subject><subject>Pleckstrin</subject><subject>Properties</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>PTEN protein</subject><subject>rac GTP-Binding Proteins - metabolism</subject><subject>Rac1 protein</subject><subject>Rapamycin</subject><subject>Receptor mechanisms</subject><subject>Receptors, Growth Factor - metabolism</subject><subject>Signal transduction</subject><subject>Tensin</subject><subject>TOR protein</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9ktFrFDEQxhdR7Fl981kCvvjQvUsmye7mRTjKqeUqllLBt5DLzm5T95Iz2auI_7w5rparFMlDwsxvvkkmX1G8ZnTKKG9mwdspUCamHJonxYSJuiqlVOJpMaFK0lIBh6PiRUo3lNJaUXheHIGERshGTorfF-Xl4hsjNqIZMRFDNiG50d0i6RDblbHfyRDChoyBGJvjmSJ9DD_Ha9LlQIgkosVNPpyQizO-nM2XV8T4lnxeLGeLyyVJrvdmcL4nzpNVbpNGYo23GF8WzzozJHx1tx8XXz8srk4_ledfPp6dzs9LWzMxlorXwnDZSSEAakBRAapWGVCdYp20rOYqD6IFW4GCBiveVYy2fNXIumoN8uPi_V53s12tsbXox2gGvYlubeIvHYzTDzPeXes-3GrBm5qByALv7gRi-LHFNOq1SxaHwXgM26RZDcDqBniT0bf_oDdhG_MAkgbOWcW4FOx_FKtUQ5v8nwdavRlQO9-FfDu7a63nAgRITilkavoIlVeLa2eDx87l-IOCk32BjSGliN39JBjVO0vpbCm9s5TOlsr4m8Pp3cN_PZSBcg-knPI9xoPHPCb4B9M40aw</recordid><startdate>20150723</startdate><enddate>20150723</enddate><creator>Dillon, L M</creator><creator>Bean, J R</creator><creator>Yang, W</creator><creator>Shee, K</creator><creator>Symonds, L K</creator><creator>Balko, J M</creator><creator>McDonald, W H</creator><creator>Liu, S</creator><creator>Gonzalez-Angulo, A M</creator><creator>Mills, G B</creator><creator>Arteaga, C L</creator><creator>Miller, T W</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150723</creationdate><title>P-REX1 creates a positive feedback loop to activate growth factor receptor, PI3K/AKT and MEK/ERK signaling in breast cancer</title><author>Dillon, L M ; Bean, J R ; Yang, W ; Shee, K ; Symonds, L K ; Balko, J M ; McDonald, W H ; Liu, S ; Gonzalez-Angulo, A M ; Mills, G B ; Arteaga, C L ; Miller, T W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c714t-9374a35f5442272e462e9d9a29f91f5c1739038d2c62928e63f610d3b8576dae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>631/67</topic><topic>82/79</topic><topic>96/1</topic><topic>96/106</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cell Biology</topic><topic>Cell migration</topic><topic>Cell Survival</topic><topic>Cellular signal transduction</topic><topic>Development and progression</topic><topic>Estrogen receptors</topic><topic>Extracellular signal-regulated kinase</topic><topic>Feedback</topic><topic>Feedback, Physiological</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Growth factors</topic><topic>Guanine Nucleotide Exchange Factors - physiology</topic><topic>Health aspects</topic><topic>Homology</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin-like growth factor I</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>MAP Kinase Signaling System</topic><topic>MCF-7 Cells</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Mutation</topic><topic>Neoplasm Transplantation</topic><topic>Oncology</topic><topic>original-article</topic><topic>Phosphatidylinositol 3,4,5-triphosphate</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphotransferases</topic><topic>Pleckstrin</topic><topic>Properties</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>PTEN protein</topic><topic>rac GTP-Binding Proteins - metabolism</topic><topic>Rac1 protein</topic><topic>Rapamycin</topic><topic>Receptor mechanisms</topic><topic>Receptors, Growth Factor - metabolism</topic><topic>Signal transduction</topic><topic>Tensin</topic><topic>TOR protein</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dillon, L M</creatorcontrib><creatorcontrib>Bean, J R</creatorcontrib><creatorcontrib>Yang, W</creatorcontrib><creatorcontrib>Shee, K</creatorcontrib><creatorcontrib>Symonds, L K</creatorcontrib><creatorcontrib>Balko, J M</creatorcontrib><creatorcontrib>McDonald, W H</creatorcontrib><creatorcontrib>Liu, S</creatorcontrib><creatorcontrib>Gonzalez-Angulo, A M</creatorcontrib><creatorcontrib>Mills, G B</creatorcontrib><creatorcontrib>Arteaga, C L</creatorcontrib><creatorcontrib>Miller, T W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dillon, L M</au><au>Bean, J R</au><au>Yang, W</au><au>Shee, K</au><au>Symonds, L K</au><au>Balko, J M</au><au>McDonald, W H</au><au>Liu, S</au><au>Gonzalez-Angulo, A M</au><au>Mills, G B</au><au>Arteaga, C L</au><au>Miller, T W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P-REX1 creates a positive feedback loop to activate growth factor receptor, PI3K/AKT and MEK/ERK signaling in breast cancer</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2015-07-23</date><risdate>2015</risdate><volume>34</volume><issue>30</issue><spage>3968</spage><epage>3976</epage><pages>3968-3976</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Phosphatidylinositol 3-kinase (PI3K) promotes cancer cell survival, migration, growth and proliferation by generating phosphatidylinositol 3,4,5-trisphosphate (PIP
3
) in the inner leaflet of the plasma membrane. PIP
3
recruits pleckstrin homology domain-containing proteins to the membrane to activate oncogenic signaling cascades. Anticancer therapeutics targeting the PI3K/AKT/mTOR (mammalian target of rapamycin) pathway are in clinical development. In a mass spectrometric screen to identify PIP
3
-regulated proteins in breast cancer cells, levels of the Rac activator PIP
3
-dependent Rac exchange factor-1 (P-REX1) increased in response to PI3K inhibition, and decreased upon loss of the PI3K antagonist phosphatase and tensin homolog (PTEN). P-REX1 mRNA and protein levels were positively correlated with ER expression, and inversely correlated with PI3K pathway activation in breast tumors as assessed by gene expression and phosphoproteomic analyses. P-REX1 increased activation of Rac1, PI3K/AKT and MEK/ERK signaling in a PTEN-independent manner, and promoted cell and tumor viability. Loss of P-REX1 or inhibition of Rac suppressed PI3K/AKT and MEK/ERK, and decreased viability. P-REX1 also promoted insulin-like growth factor-1 receptor activation, suggesting that P-REX1 provides positive feedback to activators upstream of PI3K. In support of a model where PIP
3
-driven P-REX1 promotes both PI3K/AKT and MEK/ERK signaling, high levels of P-REX1 mRNA (but not phospho-AKT or a transcriptomic signature of PI3K activation) were predictive of sensitivity to PI3K inhibitors among breast cancer cell lines. P-REX1 expression was highest in estrogen receptor-positive breast tumors compared with many other cancer subtypes, suggesting that neutralizing the P-REX1/Rac axis may provide a novel therapeutic approach to selectively abrogate oncogenic signaling in breast cancer cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25284585</pmid><doi>10.1038/onc.2014.328</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2015-07, Vol.34 (30), p.3968-3976 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4387124 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 1-Phosphatidylinositol 3-kinase 631/67 82/79 96/1 96/106 AKT protein Animals Apoptosis Breast cancer Breast Neoplasms - metabolism Breast Neoplasms - pathology Cell Biology Cell migration Cell Survival Cellular signal transduction Development and progression Estrogen receptors Extracellular signal-regulated kinase Feedback Feedback, Physiological Female Gene expression Genetic aspects Growth factors Guanine Nucleotide Exchange Factors - physiology Health aspects Homology Human Genetics Humans Insulin Insulin-like growth factor I Internal Medicine Kinases MAP Kinase Signaling System MCF-7 Cells Medicine Medicine & Public Health Mice, Inbred NOD Mice, SCID Mutation Neoplasm Transplantation Oncology original-article Phosphatidylinositol 3,4,5-triphosphate Phosphatidylinositol 3-Kinases - metabolism Phosphotransferases Pleckstrin Properties Proto-Oncogene Proteins c-akt - metabolism PTEN protein rac GTP-Binding Proteins - metabolism Rac1 protein Rapamycin Receptor mechanisms Receptors, Growth Factor - metabolism Signal transduction Tensin TOR protein Tumor cell lines Tumors |
title | P-REX1 creates a positive feedback loop to activate growth factor receptor, PI3K/AKT and MEK/ERK signaling in breast cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P-REX1%20creates%20a%20positive%20feedback%20loop%20to%20activate%20growth%20factor%20receptor,%20PI3K/AKT%20and%20MEK/ERK%20signaling%20in%20breast%20cancer&rft.jtitle=Oncogene&rft.au=Dillon,%20L%20M&rft.date=2015-07-23&rft.volume=34&rft.issue=30&rft.spage=3968&rft.epage=3976&rft.pages=3968-3976&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2014.328&rft_dat=%3Cgale_pubme%3EA424253002%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698080148&rft_id=info:pmid/25284585&rft_galeid=A424253002&rfr_iscdi=true |