Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition

Metastatic progression, including extravasation and micrometastatic outgrowth, is the main cause of cancer patient death. Recent studies suggest that cancer cells reprogram their metabolism to support increased proliferation through increased glycolysis and biosynthetic activities, including lipogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2015-07, Vol.34 (30), p.3908-3916
Hauptverfasser: Jiang, L, Xiao, L, Sugiura, H, Huang, X, Ali, A, Kuro-o, M, Deberardinis, R J, Boothman, D A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3916
container_issue 30
container_start_page 3908
container_title Oncogene
container_volume 34
creator Jiang, L
Xiao, L
Sugiura, H
Huang, X
Ali, A
Kuro-o, M
Deberardinis, R J
Boothman, D A
description Metastatic progression, including extravasation and micrometastatic outgrowth, is the main cause of cancer patient death. Recent studies suggest that cancer cells reprogram their metabolism to support increased proliferation through increased glycolysis and biosynthetic activities, including lipogenesis pathways. However, metabolic changes during metastatic progression, including alterations in regulatory gene expression, remain undefined. We show that transforming growth factor beta 1 (TGFβ1)-induced epithelial-to-mesenchymal transition (EMT) is accompanied by coordinately reduced enzyme expression required to convert glucose into fatty acids, and concomitant enhanced respiration. Overexpressed Snail1, a transcription factor mediating TGFβ1-induced EMT, was sufficient to suppress carbohydrate-responsive-element-binding protein (ChREBP, a master lipogenic regulator), and fatty acid synthase (FASN), its effector lipogenic gene. Stable FASN knockdown was sufficient to induce EMT, stimulate migration and extravasation in vitro . FASN silencing enhanced lung metastasis and death in vivo . These data suggest that a metabolic transition that suppresses lipogenesis and favors energy production is an essential component of TGFβ1-induced EMT and metastasis.
doi_str_mv 10.1038/onc.2014.321
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4387121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A424252996</galeid><sourcerecordid>A424252996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5681-ae0c7e3c43fdc8772cabc7ae372f53c05b52d64d7d7d192046b5496bef63f68c3</originalsourceid><addsrcrecordid>eNptks9u1DAQxi0EokvLjTNaiQsHsvh_7AtSVdGC1KoSas-W40x2XSV2sBOkvhYPwjPhsKWlqJrDSJ7ffPY3HoTeELwhmKmPMbgNxYRvGCXP0IrwWlZCaP4crbAWuNKU0QP0KucbjHGtMX2JDqigigulVujbBUy2ib136wRjittkh8GH7bqd05Kuzk5__SSVD-3soF3D6Kcd9N721RSrATIEt7sdbL-ekg3ZTz6GI_Sis32G13f5EF2ffr46-VKdX559PTk-r5yQilQWsKuBOc661qm6ps42rrbAatoJ5rBoBG0lb-sSRFPMZSO4lg10knVSOXaIPu11x7kZoHUQyht6MyY_2HRrovXmcSX4ndnGH4YzVRNKisD7O4EUv8-QJzP47KDvbYA4Z0OkVlpiRVlB3_2H3sQ5hWLPlCqRhAkmH6it7cH40MVyr1tEzTGnvExd64XaPEGVaGHwLgbofDl_1PBh3-BSzDlBd--RYLPsgCk7YJYdMOyPrbf_zuUe_vvpBaj2QB6XP4b0YOZJwd883Lxn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331613536</pqid></control><display><type>article</type><title>Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jiang, L ; Xiao, L ; Sugiura, H ; Huang, X ; Ali, A ; Kuro-o, M ; Deberardinis, R J ; Boothman, D A</creator><creatorcontrib>Jiang, L ; Xiao, L ; Sugiura, H ; Huang, X ; Ali, A ; Kuro-o, M ; Deberardinis, R J ; Boothman, D A</creatorcontrib><description>Metastatic progression, including extravasation and micrometastatic outgrowth, is the main cause of cancer patient death. Recent studies suggest that cancer cells reprogram their metabolism to support increased proliferation through increased glycolysis and biosynthetic activities, including lipogenesis pathways. However, metabolic changes during metastatic progression, including alterations in regulatory gene expression, remain undefined. We show that transforming growth factor beta 1 (TGFβ1)-induced epithelial-to-mesenchymal transition (EMT) is accompanied by coordinately reduced enzyme expression required to convert glucose into fatty acids, and concomitant enhanced respiration. Overexpressed Snail1, a transcription factor mediating TGFβ1-induced EMT, was sufficient to suppress carbohydrate-responsive-element-binding protein (ChREBP, a master lipogenic regulator), and fatty acid synthase (FASN), its effector lipogenic gene. Stable FASN knockdown was sufficient to induce EMT, stimulate migration and extravasation in vitro . FASN silencing enhanced lung metastasis and death in vivo . These data suggest that a metabolic transition that suppresses lipogenesis and favors energy production is an essential component of TGFβ1-induced EMT and metastasis.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2014.321</identifier><identifier>PMID: 25284588</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/80/84/2176 ; 631/80/86 ; 692/4028/67/2327 ; 692/4028/67/322 ; Animals ; Apoptosis ; Carbohydrate Metabolism ; Cell Biology ; Cell Line, Tumor ; Cell Movement ; Cell proliferation ; Development and progression ; Enzyme Repression ; Epithelial cells ; Epithelial-Mesenchymal Transition ; Extravasation ; Fatty Acid Synthase, Type I - genetics ; Fatty Acid Synthase, Type I - metabolism ; Fatty acids ; Fatty-acid synthase ; Female ; Gene Expression ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Neoplastic ; Glycolysis ; Health aspects ; Human Genetics ; Humans ; Internal Medicine ; Lipid Metabolism ; Lipogenesis ; Lung cancer ; Lung Neoplasms - metabolism ; Lung Neoplasms - secondary ; Medicine ; Medicine &amp; Public Health ; Mesenchyme ; Metabolism ; Metastases ; Metastasis ; Mice, Inbred NOD ; Mice, SCID ; Neoplasm Transplantation ; Oncology ; original-article ; Snail Family Transcription Factors ; Transcription Factors - physiology ; Transforming Growth Factor beta1 - physiology ; Transforming growth factor-b1 ; Transforming growth factors</subject><ispartof>Oncogene, 2015-07, Vol.34 (30), p.3908-3916</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Macmillan Publishers Limited 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5681-ae0c7e3c43fdc8772cabc7ae372f53c05b52d64d7d7d192046b5496bef63f68c3</citedby><cites>FETCH-LOGICAL-c5681-ae0c7e3c43fdc8772cabc7ae372f53c05b52d64d7d7d192046b5496bef63f68c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2014.321$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2014.321$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25284588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, L</creatorcontrib><creatorcontrib>Xiao, L</creatorcontrib><creatorcontrib>Sugiura, H</creatorcontrib><creatorcontrib>Huang, X</creatorcontrib><creatorcontrib>Ali, A</creatorcontrib><creatorcontrib>Kuro-o, M</creatorcontrib><creatorcontrib>Deberardinis, R J</creatorcontrib><creatorcontrib>Boothman, D A</creatorcontrib><title>Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Metastatic progression, including extravasation and micrometastatic outgrowth, is the main cause of cancer patient death. Recent studies suggest that cancer cells reprogram their metabolism to support increased proliferation through increased glycolysis and biosynthetic activities, including lipogenesis pathways. However, metabolic changes during metastatic progression, including alterations in regulatory gene expression, remain undefined. We show that transforming growth factor beta 1 (TGFβ1)-induced epithelial-to-mesenchymal transition (EMT) is accompanied by coordinately reduced enzyme expression required to convert glucose into fatty acids, and concomitant enhanced respiration. Overexpressed Snail1, a transcription factor mediating TGFβ1-induced EMT, was sufficient to suppress carbohydrate-responsive-element-binding protein (ChREBP, a master lipogenic regulator), and fatty acid synthase (FASN), its effector lipogenic gene. Stable FASN knockdown was sufficient to induce EMT, stimulate migration and extravasation in vitro . FASN silencing enhanced lung metastasis and death in vivo . These data suggest that a metabolic transition that suppresses lipogenesis and favors energy production is an essential component of TGFβ1-induced EMT and metastasis.</description><subject>631/80/84/2176</subject><subject>631/80/86</subject><subject>692/4028/67/2327</subject><subject>692/4028/67/322</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Carbohydrate Metabolism</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement</subject><subject>Cell proliferation</subject><subject>Development and progression</subject><subject>Enzyme Repression</subject><subject>Epithelial cells</subject><subject>Epithelial-Mesenchymal Transition</subject><subject>Extravasation</subject><subject>Fatty Acid Synthase, Type I - genetics</subject><subject>Fatty Acid Synthase, Type I - metabolism</subject><subject>Fatty acids</subject><subject>Fatty-acid synthase</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Glycolysis</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Lipid Metabolism</subject><subject>Lipogenesis</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - secondary</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mesenchyme</subject><subject>Metabolism</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Neoplasm Transplantation</subject><subject>Oncology</subject><subject>original-article</subject><subject>Snail Family Transcription Factors</subject><subject>Transcription Factors - physiology</subject><subject>Transforming Growth Factor beta1 - physiology</subject><subject>Transforming growth factor-b1</subject><subject>Transforming growth factors</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptks9u1DAQxi0EokvLjTNaiQsHsvh_7AtSVdGC1KoSas-W40x2XSV2sBOkvhYPwjPhsKWlqJrDSJ7ffPY3HoTeELwhmKmPMbgNxYRvGCXP0IrwWlZCaP4crbAWuNKU0QP0KucbjHGtMX2JDqigigulVujbBUy2ib136wRjittkh8GH7bqd05Kuzk5__SSVD-3soF3D6Kcd9N721RSrATIEt7sdbL-ekg3ZTz6GI_Sis32G13f5EF2ffr46-VKdX559PTk-r5yQilQWsKuBOc661qm6ps42rrbAatoJ5rBoBG0lb-sSRFPMZSO4lg10knVSOXaIPu11x7kZoHUQyht6MyY_2HRrovXmcSX4ndnGH4YzVRNKisD7O4EUv8-QJzP47KDvbYA4Z0OkVlpiRVlB3_2H3sQ5hWLPlCqRhAkmH6it7cH40MVyr1tEzTGnvExd64XaPEGVaGHwLgbofDl_1PBh3-BSzDlBd--RYLPsgCk7YJYdMOyPrbf_zuUe_vvpBaj2QB6XP4b0YOZJwd883Lxn</recordid><startdate>20150723</startdate><enddate>20150723</enddate><creator>Jiang, L</creator><creator>Xiao, L</creator><creator>Sugiura, H</creator><creator>Huang, X</creator><creator>Ali, A</creator><creator>Kuro-o, M</creator><creator>Deberardinis, R J</creator><creator>Boothman, D A</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150723</creationdate><title>Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition</title><author>Jiang, L ; Xiao, L ; Sugiura, H ; Huang, X ; Ali, A ; Kuro-o, M ; Deberardinis, R J ; Boothman, D A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5681-ae0c7e3c43fdc8772cabc7ae372f53c05b52d64d7d7d192046b5496bef63f68c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/80/84/2176</topic><topic>631/80/86</topic><topic>692/4028/67/2327</topic><topic>692/4028/67/322</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Carbohydrate Metabolism</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement</topic><topic>Cell proliferation</topic><topic>Development and progression</topic><topic>Enzyme Repression</topic><topic>Epithelial cells</topic><topic>Epithelial-Mesenchymal Transition</topic><topic>Extravasation</topic><topic>Fatty Acid Synthase, Type I - genetics</topic><topic>Fatty Acid Synthase, Type I - metabolism</topic><topic>Fatty acids</topic><topic>Fatty-acid synthase</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Glycolysis</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Lipid Metabolism</topic><topic>Lipogenesis</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - secondary</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mesenchyme</topic><topic>Metabolism</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Neoplasm Transplantation</topic><topic>Oncology</topic><topic>original-article</topic><topic>Snail Family Transcription Factors</topic><topic>Transcription Factors - physiology</topic><topic>Transforming Growth Factor beta1 - physiology</topic><topic>Transforming growth factor-b1</topic><topic>Transforming growth factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, L</creatorcontrib><creatorcontrib>Xiao, L</creatorcontrib><creatorcontrib>Sugiura, H</creatorcontrib><creatorcontrib>Huang, X</creatorcontrib><creatorcontrib>Ali, A</creatorcontrib><creatorcontrib>Kuro-o, M</creatorcontrib><creatorcontrib>Deberardinis, R J</creatorcontrib><creatorcontrib>Boothman, D A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, L</au><au>Xiao, L</au><au>Sugiura, H</au><au>Huang, X</au><au>Ali, A</au><au>Kuro-o, M</au><au>Deberardinis, R J</au><au>Boothman, D A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2015-07-23</date><risdate>2015</risdate><volume>34</volume><issue>30</issue><spage>3908</spage><epage>3916</epage><pages>3908-3916</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Metastatic progression, including extravasation and micrometastatic outgrowth, is the main cause of cancer patient death. Recent studies suggest that cancer cells reprogram their metabolism to support increased proliferation through increased glycolysis and biosynthetic activities, including lipogenesis pathways. However, metabolic changes during metastatic progression, including alterations in regulatory gene expression, remain undefined. We show that transforming growth factor beta 1 (TGFβ1)-induced epithelial-to-mesenchymal transition (EMT) is accompanied by coordinately reduced enzyme expression required to convert glucose into fatty acids, and concomitant enhanced respiration. Overexpressed Snail1, a transcription factor mediating TGFβ1-induced EMT, was sufficient to suppress carbohydrate-responsive-element-binding protein (ChREBP, a master lipogenic regulator), and fatty acid synthase (FASN), its effector lipogenic gene. Stable FASN knockdown was sufficient to induce EMT, stimulate migration and extravasation in vitro . FASN silencing enhanced lung metastasis and death in vivo . These data suggest that a metabolic transition that suppresses lipogenesis and favors energy production is an essential component of TGFβ1-induced EMT and metastasis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25284588</pmid><doi>10.1038/onc.2014.321</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2015-07, Vol.34 (30), p.3908-3916
issn 0950-9232
1476-5594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4387121
source MEDLINE; SpringerLink Journals; Nature Journals Online; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 631/80/84/2176
631/80/86
692/4028/67/2327
692/4028/67/322
Animals
Apoptosis
Carbohydrate Metabolism
Cell Biology
Cell Line, Tumor
Cell Movement
Cell proliferation
Development and progression
Enzyme Repression
Epithelial cells
Epithelial-Mesenchymal Transition
Extravasation
Fatty Acid Synthase, Type I - genetics
Fatty Acid Synthase, Type I - metabolism
Fatty acids
Fatty-acid synthase
Female
Gene Expression
Gene Expression Regulation, Enzymologic
Gene Expression Regulation, Neoplastic
Glycolysis
Health aspects
Human Genetics
Humans
Internal Medicine
Lipid Metabolism
Lipogenesis
Lung cancer
Lung Neoplasms - metabolism
Lung Neoplasms - secondary
Medicine
Medicine & Public Health
Mesenchyme
Metabolism
Metastases
Metastasis
Mice, Inbred NOD
Mice, SCID
Neoplasm Transplantation
Oncology
original-article
Snail Family Transcription Factors
Transcription Factors - physiology
Transforming Growth Factor beta1 - physiology
Transforming growth factor-b1
Transforming growth factors
title Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20reprogramming%20during%20TGF%CE%B21-induced%20epithelial-to-mesenchymal%20transition&rft.jtitle=Oncogene&rft.au=Jiang,%20L&rft.date=2015-07-23&rft.volume=34&rft.issue=30&rft.spage=3908&rft.epage=3916&rft.pages=3908-3916&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/onc.2014.321&rft_dat=%3Cgale_pubme%3EA424252996%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331613536&rft_id=info:pmid/25284588&rft_galeid=A424252996&rfr_iscdi=true