Structural Equation Model Trees

In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological methods 2013-03, Vol.18 (1), p.71-86
Hauptverfasser: Brandmaier, Andreas M, von Oertzen, Timo, McArdle, John J, Lindenberger, Ulman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 1
container_start_page 71
container_title Psychological methods
container_volume 18
creator Brandmaier, Andreas M
von Oertzen, Timo
McArdle, John J
Lindenberger, Ulman
description In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. (Contains 6 figures.)
doi_str_mv 10.1037/a0030001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4386908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1004462</ericid><sourcerecordid>1373490293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-471a26081b3cd70b47340b2cd061c025045e462165640594a2acd4d53113380d3</originalsourceid><addsrcrecordid>eNqNkctKAzEUhoMoVqvgC6gFEdyMnpNkZpKNIKXeqLiwgruQZlKdMp1pkxnBtzelN3XlKoHz8fNfCDlCuERg6ZUGYACAW2QPJZMR8oRthz8IGkkh31pk3_txADgTfJe0KJWCp0LukdOX2jWmbpwuOr1Zo-u8KjtPVWaLzsBZ6w_IzkgX3h4u3zZ5ve0NuvdR__nuoXvTjwwXcR3xFDVNQOCQmSyFIU8ZhyE1GSRogMbAY8sTikmccIgl11SbjGcxQ2RMQMba5HqhO22GE5sZW9bBkpq6fKLdl6p0rn5fyvxDvVefKiRKJIggcLEUcNWssb5Wk9wbWxS6tFXjFbJgSQKV7B8oJkxgjHP07A86rhpXhiYUAofQbQi0ETSu8t7Z0do3gpoPpFYDBfTkZ841uFokAOdLQHuji5HTpcn9hktxLpgG7njBWZeb9bn3iAA8NM2-AVOsnM8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1040989564</pqid></control><display><type>article</type><title>Structural Equation Model Trees</title><source>MEDLINE</source><source>EBSCOhost APA PsycARTICLES</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Brandmaier, Andreas M ; von Oertzen, Timo ; McArdle, John J ; Lindenberger, Ulman</creator><creatorcontrib>Brandmaier, Andreas M ; von Oertzen, Timo ; McArdle, John J ; Lindenberger, Ulman</creatorcontrib><description>In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. (Contains 6 figures.)</description><identifier>ISSN: 1082-989X</identifier><identifier>EISSN: 1939-1463</identifier><identifier>DOI: 10.1037/a0030001</identifier><identifier>PMID: 22984789</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Biological and medical sciences ; Computation ; Data Interpretation, Statistical ; Data Mining ; Factor Analysis ; Fundamental and applied biological sciences. Psychology ; Humans ; Intelligence Tests ; Methodology ; Models, Statistical ; Multivariate Analysis ; Parameters ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics. Statistics. Methodology ; Social sciences ; Statistics. Mathematics ; Structural Equation Modeling ; Structural Equation Models ; Trees ; Wechsler Adult Intelligence Scale (Revised) ; Wechsler Scales - statistics &amp; numerical data</subject><ispartof>Psychological methods, 2013-03, Vol.18 (1), p.71-86</ispartof><rights>2015 INIST-CNRS</rights><rights>PsycINFO Database Record (c) 2013 APA, all rights reserved.</rights><rights>2012, American Psychological Association</rights><rights>2012 American Psychological Association 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-471a26081b3cd70b47340b2cd061c025045e462165640594a2acd4d53113380d3</citedby><orcidid>0000-0001-8428-6453 ; 0000-0001-8765-6982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906,30981</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1004462$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27110377$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22984789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brandmaier, Andreas M</creatorcontrib><creatorcontrib>von Oertzen, Timo</creatorcontrib><creatorcontrib>McArdle, John J</creatorcontrib><creatorcontrib>Lindenberger, Ulman</creatorcontrib><title>Structural Equation Model Trees</title><title>Psychological methods</title><addtitle>Psychol Methods</addtitle><description>In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. (Contains 6 figures.)</description><subject>Biological and medical sciences</subject><subject>Computation</subject><subject>Data Interpretation, Statistical</subject><subject>Data Mining</subject><subject>Factor Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Intelligence Tests</subject><subject>Methodology</subject><subject>Models, Statistical</subject><subject>Multivariate Analysis</subject><subject>Parameters</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Social sciences</subject><subject>Statistics. Mathematics</subject><subject>Structural Equation Modeling</subject><subject>Structural Equation Models</subject><subject>Trees</subject><subject>Wechsler Adult Intelligence Scale (Revised)</subject><subject>Wechsler Scales - statistics &amp; numerical data</subject><issn>1082-989X</issn><issn>1939-1463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNqNkctKAzEUhoMoVqvgC6gFEdyMnpNkZpKNIKXeqLiwgruQZlKdMp1pkxnBtzelN3XlKoHz8fNfCDlCuERg6ZUGYACAW2QPJZMR8oRthz8IGkkh31pk3_txADgTfJe0KJWCp0LukdOX2jWmbpwuOr1Zo-u8KjtPVWaLzsBZ6w_IzkgX3h4u3zZ5ve0NuvdR__nuoXvTjwwXcR3xFDVNQOCQmSyFIU8ZhyE1GSRogMbAY8sTikmccIgl11SbjGcxQ2RMQMba5HqhO22GE5sZW9bBkpq6fKLdl6p0rn5fyvxDvVefKiRKJIggcLEUcNWssb5Wk9wbWxS6tFXjFbJgSQKV7B8oJkxgjHP07A86rhpXhiYUAofQbQi0ETSu8t7Z0do3gpoPpFYDBfTkZ841uFokAOdLQHuji5HTpcn9hktxLpgG7njBWZeb9bn3iAA8NM2-AVOsnM8</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Brandmaier, Andreas M</creator><creator>von Oertzen, Timo</creator><creator>McArdle, John J</creator><creator>Lindenberger, Ulman</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7X8</scope><scope>7QJ</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8428-6453</orcidid><orcidid>https://orcid.org/0000-0001-8765-6982</orcidid></search><sort><creationdate>20130301</creationdate><title>Structural Equation Model Trees</title><author>Brandmaier, Andreas M ; von Oertzen, Timo ; McArdle, John J ; Lindenberger, Ulman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-471a26081b3cd70b47340b2cd061c025045e462165640594a2acd4d53113380d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological and medical sciences</topic><topic>Computation</topic><topic>Data Interpretation, Statistical</topic><topic>Data Mining</topic><topic>Factor Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Intelligence Tests</topic><topic>Methodology</topic><topic>Models, Statistical</topic><topic>Multivariate Analysis</topic><topic>Parameters</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Social sciences</topic><topic>Statistics. Mathematics</topic><topic>Structural Equation Modeling</topic><topic>Structural Equation Models</topic><topic>Trees</topic><topic>Wechsler Adult Intelligence Scale (Revised)</topic><topic>Wechsler Scales - statistics &amp; numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brandmaier, Andreas M</creatorcontrib><creatorcontrib>von Oertzen, Timo</creatorcontrib><creatorcontrib>McArdle, John J</creatorcontrib><creatorcontrib>Lindenberger, Ulman</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Psychological methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brandmaier, Andreas M</au><au>von Oertzen, Timo</au><au>McArdle, John J</au><au>Lindenberger, Ulman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1004462</ericid><atitle>Structural Equation Model Trees</atitle><jtitle>Psychological methods</jtitle><addtitle>Psychol Methods</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>18</volume><issue>1</issue><spage>71</spage><epage>86</epage><pages>71-86</pages><issn>1082-989X</issn><eissn>1939-1463</eissn><abstract>In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. (Contains 6 figures.)</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>22984789</pmid><doi>10.1037/a0030001</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8428-6453</orcidid><orcidid>https://orcid.org/0000-0001-8765-6982</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1082-989X
ispartof Psychological methods, 2013-03, Vol.18 (1), p.71-86
issn 1082-989X
1939-1463
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4386908
source MEDLINE; EBSCOhost APA PsycARTICLES; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Biological and medical sciences
Computation
Data Interpretation, Statistical
Data Mining
Factor Analysis
Fundamental and applied biological sciences. Psychology
Humans
Intelligence Tests
Methodology
Models, Statistical
Multivariate Analysis
Parameters
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychometrics. Statistics. Methodology
Social sciences
Statistics. Mathematics
Structural Equation Modeling
Structural Equation Models
Trees
Wechsler Adult Intelligence Scale (Revised)
Wechsler Scales - statistics & numerical data
title Structural Equation Model Trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Equation%20Model%20Trees&rft.jtitle=Psychological%20methods&rft.au=Brandmaier,%20Andreas%20M&rft.date=2013-03-01&rft.volume=18&rft.issue=1&rft.spage=71&rft.epage=86&rft.pages=71-86&rft.issn=1082-989X&rft.eissn=1939-1463&rft_id=info:doi/10.1037/a0030001&rft_dat=%3Cproquest_pubme%3E1373490293%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1040989564&rft_id=info:pmid/22984789&rft_ericid=EJ1004462&rfr_iscdi=true