A Linear-RBF Multikernel SVM to Classify Big Text Corpora
Support vector machine (SVM) is a powerful technique for classification. However, SVM is not suitable for classification of large datasets or text corpora, because the training complexity of SVMs is highly dependent on the input size. Recent developments in the literature on the SVM and other kernel...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2015-01, Vol.2015 (2015), p.1-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 2015 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2015 |
creator | Romero, R. Borrajo, L. Iglesias, E. L. |
description | Support vector machine (SVM) is a powerful technique for classification. However, SVM is not suitable for classification of large datasets or text corpora, because the training complexity of SVMs is highly dependent on the input size. Recent developments in the literature on the SVM and other kernel methods emphasize the need to consider multiple kernels or parameterizations of kernels because they provide greater flexibility. This paper shows a multikernel SVM to manage highly dimensional data, providing an automatic parameterization with low computational cost and improving results against SVMs parameterized under a brute-force search. The model consists in spreading the dataset into cohesive term slices (clusters) to construct a defined structure (multikernel). The new approach is tested on different text corpora. Experimental results show that the new classifier has good accuracy compared with the classic SVM, while the training is significantly faster than several other SVM classifiers. |
doi_str_mv | 10.1155/2015/878291 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4386713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A458163714</galeid><sourcerecordid>A458163714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-3b49f223b5a2db4bba67ab3ed645ca5542db1d1ba8b6852512947053eca637733</originalsourceid><addsrcrecordid>eNqN0c1LHDEYB-BQKlXUU-8y0EupjM6b71wK6-IXrAit7TUkM5k1OjvZJjOt_vdmWbu1nswlIXn4JXlfhD5CdQTA2DGugB1LIbGCd2gHE6AlBwrvN2tCttF-SndVHhJ4pfgHtI2ZFKoiagepSTHzvTOx_HZyVlyN3eDvXexdV3z_eVUMoZh2JiXfPhYnfl7cuIehmIa4DNHsoa3WdMntP8-76MfZ6c30opxdn19OJ7OyZlgOJbFUtRgTywxuLLXWcGEscQ2nrDaM0bwLDVgjLZcMM8CKiooRVxtOhCBkF31d5y5Hu3BN7fohmk4vo1-Y-KiD8fr_k97f6nn4rSmRXMAq4PNzQAy_RpcGvfCpdl1nehfGpIGrfCkGwt5ABcWAhVCZfnpF78IY-1yJrLiSNJeY_VNz0znt-zbkJ9arUD3JAvIXgWZ1uFZ1DClF125-B5VetVmv2qzXbc764GVBNvZvUzP4sga3vm_MH_-2NJeJa80LzATkBz4BEXy0eA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669845875</pqid></control><display><type>article</type><title>A Linear-RBF Multikernel SVM to Classify Big Text Corpora</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Romero, R. ; Borrajo, L. ; Iglesias, E. L.</creator><contributor>Corchado, Juan M.</contributor><creatorcontrib>Romero, R. ; Borrajo, L. ; Iglesias, E. L. ; Corchado, Juan M.</creatorcontrib><description>Support vector machine (SVM) is a powerful technique for classification. However, SVM is not suitable for classification of large datasets or text corpora, because the training complexity of SVMs is highly dependent on the input size. Recent developments in the literature on the SVM and other kernel methods emphasize the need to consider multiple kernels or parameterizations of kernels because they provide greater flexibility. This paper shows a multikernel SVM to manage highly dimensional data, providing an automatic parameterization with low computational cost and improving results against SVMs parameterized under a brute-force search. The model consists in spreading the dataset into cohesive term slices (clusters) to construct a defined structure (multikernel). The new approach is tested on different text corpora. Experimental results show that the new classifier has good accuracy compared with the classic SVM, while the training is significantly faster than several other SVM classifiers.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2015/878291</identifier><identifier>PMID: 25879039</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Artificial Intelligence ; Classification ; Data Mining ; Datasets ; Humans ; Information management ; Information retrieval ; Methods ; Pattern Recognition, Automated - methods ; Software ; Sparsity ; Support Vector Machine ; Support vector machines ; Text categorization</subject><ispartof>BioMed research international, 2015-01, Vol.2015 (2015), p.1-14</ispartof><rights>Copyright © 2015 R. Romero et al.</rights><rights>COPYRIGHT 2015 John Wiley & Sons, Inc.</rights><rights>Copyright © 2015 R. Romero et al. R. Romero et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2015 R. Romero et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-3b49f223b5a2db4bba67ab3ed645ca5542db1d1ba8b6852512947053eca637733</citedby><cites>FETCH-LOGICAL-c528t-3b49f223b5a2db4bba67ab3ed645ca5542db1d1ba8b6852512947053eca637733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386713/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386713/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25879039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Corchado, Juan M.</contributor><creatorcontrib>Romero, R.</creatorcontrib><creatorcontrib>Borrajo, L.</creatorcontrib><creatorcontrib>Iglesias, E. L.</creatorcontrib><title>A Linear-RBF Multikernel SVM to Classify Big Text Corpora</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Support vector machine (SVM) is a powerful technique for classification. However, SVM is not suitable for classification of large datasets or text corpora, because the training complexity of SVMs is highly dependent on the input size. Recent developments in the literature on the SVM and other kernel methods emphasize the need to consider multiple kernels or parameterizations of kernels because they provide greater flexibility. This paper shows a multikernel SVM to manage highly dimensional data, providing an automatic parameterization with low computational cost and improving results against SVMs parameterized under a brute-force search. The model consists in spreading the dataset into cohesive term slices (clusters) to construct a defined structure (multikernel). The new approach is tested on different text corpora. Experimental results show that the new classifier has good accuracy compared with the classic SVM, while the training is significantly faster than several other SVM classifiers.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Data Mining</subject><subject>Datasets</subject><subject>Humans</subject><subject>Information management</subject><subject>Information retrieval</subject><subject>Methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Software</subject><subject>Sparsity</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Text categorization</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0c1LHDEYB-BQKlXUU-8y0EupjM6b71wK6-IXrAit7TUkM5k1OjvZJjOt_vdmWbu1nswlIXn4JXlfhD5CdQTA2DGugB1LIbGCd2gHE6AlBwrvN2tCttF-SndVHhJ4pfgHtI2ZFKoiagepSTHzvTOx_HZyVlyN3eDvXexdV3z_eVUMoZh2JiXfPhYnfl7cuIehmIa4DNHsoa3WdMntP8-76MfZ6c30opxdn19OJ7OyZlgOJbFUtRgTywxuLLXWcGEscQ2nrDaM0bwLDVgjLZcMM8CKiooRVxtOhCBkF31d5y5Hu3BN7fohmk4vo1-Y-KiD8fr_k97f6nn4rSmRXMAq4PNzQAy_RpcGvfCpdl1nehfGpIGrfCkGwt5ABcWAhVCZfnpF78IY-1yJrLiSNJeY_VNz0znt-zbkJ9arUD3JAvIXgWZ1uFZ1DClF125-B5VetVmv2qzXbc764GVBNvZvUzP4sga3vm_MH_-2NJeJa80LzATkBz4BEXy0eA</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Romero, R.</creator><creator>Borrajo, L.</creator><creator>Iglesias, E. L.</creator><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>A Linear-RBF Multikernel SVM to Classify Big Text Corpora</title><author>Romero, R. ; Borrajo, L. ; Iglesias, E. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-3b49f223b5a2db4bba67ab3ed645ca5542db1d1ba8b6852512947053eca637733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Data Mining</topic><topic>Datasets</topic><topic>Humans</topic><topic>Information management</topic><topic>Information retrieval</topic><topic>Methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Software</topic><topic>Sparsity</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Text categorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romero, R.</creatorcontrib><creatorcontrib>Borrajo, L.</creatorcontrib><creatorcontrib>Iglesias, E. L.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romero, R.</au><au>Borrajo, L.</au><au>Iglesias, E. L.</au><au>Corchado, Juan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Linear-RBF Multikernel SVM to Classify Big Text Corpora</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Support vector machine (SVM) is a powerful technique for classification. However, SVM is not suitable for classification of large datasets or text corpora, because the training complexity of SVMs is highly dependent on the input size. Recent developments in the literature on the SVM and other kernel methods emphasize the need to consider multiple kernels or parameterizations of kernels because they provide greater flexibility. This paper shows a multikernel SVM to manage highly dimensional data, providing an automatic parameterization with low computational cost and improving results against SVMs parameterized under a brute-force search. The model consists in spreading the dataset into cohesive term slices (clusters) to construct a defined structure (multikernel). The new approach is tested on different text corpora. Experimental results show that the new classifier has good accuracy compared with the classic SVM, while the training is significantly faster than several other SVM classifiers.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>25879039</pmid><doi>10.1155/2015/878291</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2015-01, Vol.2015 (2015), p.1-14 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4386713 |
source | MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Artificial Intelligence Classification Data Mining Datasets Humans Information management Information retrieval Methods Pattern Recognition, Automated - methods Software Sparsity Support Vector Machine Support vector machines Text categorization |
title | A Linear-RBF Multikernel SVM to Classify Big Text Corpora |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Linear-RBF%20Multikernel%20SVM%20to%20Classify%20Big%20Text%20Corpora&rft.jtitle=BioMed%20research%20international&rft.au=Romero,%20R.&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2015/878291&rft_dat=%3Cgale_pubme%3EA458163714%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669845875&rft_id=info:pmid/25879039&rft_galeid=A458163714&rfr_iscdi=true |