Hypoxia induces a lipogenic cancer cell phenotype via HIF1α-dependent and -independent pathways

The biochemistry of cancer cells diverges significantly from normal cells as a result of a comprehensive reprogramming of metabolic pathways. A major factor influencing cancer metabolism is hypoxia, which is mediated by HIF1α and HIF2α. HIF1α represents one of the principal regulators of metabolism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncotarget 2015-02, Vol.6 (4), p.1920-1941
Hauptverfasser: Valli, Alessandro, Rodriguez, Miguel, Moutsianas, Loukas, Fischer, Roman, Fedele, Vita, Huang, Hong-Lei, Van Stiphout, Ruud, Jones, Dylan, Mccarthy, Michael, Vinaxia, Maria, Igarashi, Kaori, Sato, Maya, Soga, Tomoyoshi, Buffa, Francesca, Mccullagh, James, Yanes, Oscar, Harris, Adrian, Kessler, Benedikt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1941
container_issue 4
container_start_page 1920
container_title Oncotarget
container_volume 6
creator Valli, Alessandro
Rodriguez, Miguel
Moutsianas, Loukas
Fischer, Roman
Fedele, Vita
Huang, Hong-Lei
Van Stiphout, Ruud
Jones, Dylan
Mccarthy, Michael
Vinaxia, Maria
Igarashi, Kaori
Sato, Maya
Soga, Tomoyoshi
Buffa, Francesca
Mccullagh, James
Yanes, Oscar
Harris, Adrian
Kessler, Benedikt
description The biochemistry of cancer cells diverges significantly from normal cells as a result of a comprehensive reprogramming of metabolic pathways. A major factor influencing cancer metabolism is hypoxia, which is mediated by HIF1α and HIF2α. HIF1α represents one of the principal regulators of metabolism and energetic balance in cancer cells through its regulation of glycolysis, glycogen synthesis, Krebs cycle and the pentose phosphate shunt. However, less is known about the role of HIF1α in modulating lipid metabolism. Lipids serve cancer cells to provide molecules acting as oncogenic signals, energetic reserve, precursors for new membrane synthesis and to balance redox biological reactions. To study the role of HIF1α in these processes, we used HCT116 colorectal cancer cells expressing endogenous HIF1α and cells in which the hif1α gene was deleted to characterize HIF1α-dependent and independent effects on hypoxia regulated lipid metabolites. Untargeted metabolomics integrated with proteomics revealed that hypoxia induced many changes in lipids metabolites. Enzymatic steps in fatty acid synthesis and the Kennedy pathway were modified in a HIF1α-dependent fashion. Palmitate, stearate, PLD3 and PAFC16 were regulated in a HIF-independent manner. Our results demonstrate the impact of hypoxia on lipid metabolites, of which a distinct subset is regulated by HIF1α.
doi_str_mv 10.18632/oncotarget.3058
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4385826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1657321004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-dd81380ed53b62d3e644e9ddd5a361a3f21ccd52ebc741773827a843e9963cbe3</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBAIUOmdE_KRS4rfcS5IqKK0UiUucDauvW2DUjvEKdDP4kf4JsKrlL3sand2dlaD0CklA6oVZxcxuNjaZgHtgBOp99AxLUSRMSn5_k59hPopPZIupMg1Kw7REZOKSCbIMXoYb-r4WlpcBr92kLDFVVnHBYTSYWeDgwY7qCpcLyHEdlMDfu7Q48mIvr9lHmoIHkKLbfA46zi2jdq2yxe7SSfoYG6rBP2f3EP3o-u74Tib3t5MhlfTzPFCtZn3mnJNwEs-U8xzUEJA4b2Xlitq-ZxR57xkMHO5oHnONcutFhyKQnE3A95Dl9-89Xq2Au86DY2tTN2UK9tsTLSl-T8J5dIs4rMRXEvNVEdw_kPQxKc1pNasyvT5ug0Q18lQJXPOKCGig5JvqGtiSg3Mt2coMV_emD9vzKc33crZrrztwq8T_AOtyY_v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1657321004</pqid></control><display><type>article</type><title>Hypoxia induces a lipogenic cancer cell phenotype via HIF1α-dependent and -independent pathways</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free E- Journals</source><source>PubMed Central Open Access</source><creator>Valli, Alessandro ; Rodriguez, Miguel ; Moutsianas, Loukas ; Fischer, Roman ; Fedele, Vita ; Huang, Hong-Lei ; Van Stiphout, Ruud ; Jones, Dylan ; Mccarthy, Michael ; Vinaxia, Maria ; Igarashi, Kaori ; Sato, Maya ; Soga, Tomoyoshi ; Buffa, Francesca ; Mccullagh, James ; Yanes, Oscar ; Harris, Adrian ; Kessler, Benedikt</creator><creatorcontrib>Valli, Alessandro ; Rodriguez, Miguel ; Moutsianas, Loukas ; Fischer, Roman ; Fedele, Vita ; Huang, Hong-Lei ; Van Stiphout, Ruud ; Jones, Dylan ; Mccarthy, Michael ; Vinaxia, Maria ; Igarashi, Kaori ; Sato, Maya ; Soga, Tomoyoshi ; Buffa, Francesca ; Mccullagh, James ; Yanes, Oscar ; Harris, Adrian ; Kessler, Benedikt</creatorcontrib><description>The biochemistry of cancer cells diverges significantly from normal cells as a result of a comprehensive reprogramming of metabolic pathways. A major factor influencing cancer metabolism is hypoxia, which is mediated by HIF1α and HIF2α. HIF1α represents one of the principal regulators of metabolism and energetic balance in cancer cells through its regulation of glycolysis, glycogen synthesis, Krebs cycle and the pentose phosphate shunt. However, less is known about the role of HIF1α in modulating lipid metabolism. Lipids serve cancer cells to provide molecules acting as oncogenic signals, energetic reserve, precursors for new membrane synthesis and to balance redox biological reactions. To study the role of HIF1α in these processes, we used HCT116 colorectal cancer cells expressing endogenous HIF1α and cells in which the hif1α gene was deleted to characterize HIF1α-dependent and independent effects on hypoxia regulated lipid metabolites. Untargeted metabolomics integrated with proteomics revealed that hypoxia induced many changes in lipids metabolites. Enzymatic steps in fatty acid synthesis and the Kennedy pathway were modified in a HIF1α-dependent fashion. Palmitate, stearate, PLD3 and PAFC16 were regulated in a HIF-independent manner. Our results demonstrate the impact of hypoxia on lipid metabolites, of which a distinct subset is regulated by HIF1α.</description><identifier>ISSN: 1949-2553</identifier><identifier>EISSN: 1949-2553</identifier><identifier>DOI: 10.18632/oncotarget.3058</identifier><identifier>PMID: 25605240</identifier><language>eng</language><publisher>United States: Impact Journals LLC</publisher><subject>Acetyl-CoA C-Acyltransferase - genetics ; Acetyl-CoA C-Acyltransferase - metabolism ; Acetyl-CoA Carboxylase - genetics ; Acetyl-CoA Carboxylase - metabolism ; Aged ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Blotting, Western ; Cell Hypoxia ; Cell Line, Tumor ; Colorectal Neoplasms - genetics ; Colorectal Neoplasms - metabolism ; Colorectal Neoplasms - pathology ; Fatty Acids - biosynthesis ; Female ; Genomics - methods ; HCT116 Cells ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Lipid Metabolism ; Lipids - biosynthesis ; Male ; Metabolomics - methods ; Middle Aged ; Platelet Activating Factor - genetics ; Platelet Activating Factor - metabolism ; Priority Research Paper ; Proteomics - methods ; RNA Interference ; Signal Transduction</subject><ispartof>Oncotarget, 2015-02, Vol.6 (4), p.1920-1941</ispartof><rights>Copyright: © 2015 Valli et al. 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-dd81380ed53b62d3e644e9ddd5a361a3f21ccd52ebc741773827a843e9963cbe3</citedby><cites>FETCH-LOGICAL-c396t-dd81380ed53b62d3e644e9ddd5a361a3f21ccd52ebc741773827a843e9963cbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385826/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385826/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25605240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valli, Alessandro</creatorcontrib><creatorcontrib>Rodriguez, Miguel</creatorcontrib><creatorcontrib>Moutsianas, Loukas</creatorcontrib><creatorcontrib>Fischer, Roman</creatorcontrib><creatorcontrib>Fedele, Vita</creatorcontrib><creatorcontrib>Huang, Hong-Lei</creatorcontrib><creatorcontrib>Van Stiphout, Ruud</creatorcontrib><creatorcontrib>Jones, Dylan</creatorcontrib><creatorcontrib>Mccarthy, Michael</creatorcontrib><creatorcontrib>Vinaxia, Maria</creatorcontrib><creatorcontrib>Igarashi, Kaori</creatorcontrib><creatorcontrib>Sato, Maya</creatorcontrib><creatorcontrib>Soga, Tomoyoshi</creatorcontrib><creatorcontrib>Buffa, Francesca</creatorcontrib><creatorcontrib>Mccullagh, James</creatorcontrib><creatorcontrib>Yanes, Oscar</creatorcontrib><creatorcontrib>Harris, Adrian</creatorcontrib><creatorcontrib>Kessler, Benedikt</creatorcontrib><title>Hypoxia induces a lipogenic cancer cell phenotype via HIF1α-dependent and -independent pathways</title><title>Oncotarget</title><addtitle>Oncotarget</addtitle><description>The biochemistry of cancer cells diverges significantly from normal cells as a result of a comprehensive reprogramming of metabolic pathways. A major factor influencing cancer metabolism is hypoxia, which is mediated by HIF1α and HIF2α. HIF1α represents one of the principal regulators of metabolism and energetic balance in cancer cells through its regulation of glycolysis, glycogen synthesis, Krebs cycle and the pentose phosphate shunt. However, less is known about the role of HIF1α in modulating lipid metabolism. Lipids serve cancer cells to provide molecules acting as oncogenic signals, energetic reserve, precursors for new membrane synthesis and to balance redox biological reactions. To study the role of HIF1α in these processes, we used HCT116 colorectal cancer cells expressing endogenous HIF1α and cells in which the hif1α gene was deleted to characterize HIF1α-dependent and independent effects on hypoxia regulated lipid metabolites. Untargeted metabolomics integrated with proteomics revealed that hypoxia induced many changes in lipids metabolites. Enzymatic steps in fatty acid synthesis and the Kennedy pathway were modified in a HIF1α-dependent fashion. Palmitate, stearate, PLD3 and PAFC16 were regulated in a HIF-independent manner. Our results demonstrate the impact of hypoxia on lipid metabolites, of which a distinct subset is regulated by HIF1α.</description><subject>Acetyl-CoA C-Acyltransferase - genetics</subject><subject>Acetyl-CoA C-Acyltransferase - metabolism</subject><subject>Acetyl-CoA Carboxylase - genetics</subject><subject>Acetyl-CoA Carboxylase - metabolism</subject><subject>Aged</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Blotting, Western</subject><subject>Cell Hypoxia</subject><subject>Cell Line, Tumor</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Colorectal Neoplasms - metabolism</subject><subject>Colorectal Neoplasms - pathology</subject><subject>Fatty Acids - biosynthesis</subject><subject>Female</subject><subject>Genomics - methods</subject><subject>HCT116 Cells</subject><subject>Humans</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Lipid Metabolism</subject><subject>Lipids - biosynthesis</subject><subject>Male</subject><subject>Metabolomics - methods</subject><subject>Middle Aged</subject><subject>Platelet Activating Factor - genetics</subject><subject>Platelet Activating Factor - metabolism</subject><subject>Priority Research Paper</subject><subject>Proteomics - methods</subject><subject>RNA Interference</subject><subject>Signal Transduction</subject><issn>1949-2553</issn><issn>1949-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctOwzAQtBAIUOmdE_KRS4rfcS5IqKK0UiUucDauvW2DUjvEKdDP4kf4JsKrlL3sand2dlaD0CklA6oVZxcxuNjaZgHtgBOp99AxLUSRMSn5_k59hPopPZIupMg1Kw7REZOKSCbIMXoYb-r4WlpcBr92kLDFVVnHBYTSYWeDgwY7qCpcLyHEdlMDfu7Q48mIvr9lHmoIHkKLbfA46zi2jdq2yxe7SSfoYG6rBP2f3EP3o-u74Tib3t5MhlfTzPFCtZn3mnJNwEs-U8xzUEJA4b2Xlitq-ZxR57xkMHO5oHnONcutFhyKQnE3A95Dl9-89Xq2Au86DY2tTN2UK9tsTLSl-T8J5dIs4rMRXEvNVEdw_kPQxKc1pNasyvT5ug0Q18lQJXPOKCGig5JvqGtiSg3Mt2coMV_emD9vzKc33crZrrztwq8T_AOtyY_v</recordid><startdate>20150210</startdate><enddate>20150210</enddate><creator>Valli, Alessandro</creator><creator>Rodriguez, Miguel</creator><creator>Moutsianas, Loukas</creator><creator>Fischer, Roman</creator><creator>Fedele, Vita</creator><creator>Huang, Hong-Lei</creator><creator>Van Stiphout, Ruud</creator><creator>Jones, Dylan</creator><creator>Mccarthy, Michael</creator><creator>Vinaxia, Maria</creator><creator>Igarashi, Kaori</creator><creator>Sato, Maya</creator><creator>Soga, Tomoyoshi</creator><creator>Buffa, Francesca</creator><creator>Mccullagh, James</creator><creator>Yanes, Oscar</creator><creator>Harris, Adrian</creator><creator>Kessler, Benedikt</creator><general>Impact Journals LLC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150210</creationdate><title>Hypoxia induces a lipogenic cancer cell phenotype via HIF1α-dependent and -independent pathways</title><author>Valli, Alessandro ; Rodriguez, Miguel ; Moutsianas, Loukas ; Fischer, Roman ; Fedele, Vita ; Huang, Hong-Lei ; Van Stiphout, Ruud ; Jones, Dylan ; Mccarthy, Michael ; Vinaxia, Maria ; Igarashi, Kaori ; Sato, Maya ; Soga, Tomoyoshi ; Buffa, Francesca ; Mccullagh, James ; Yanes, Oscar ; Harris, Adrian ; Kessler, Benedikt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-dd81380ed53b62d3e644e9ddd5a361a3f21ccd52ebc741773827a843e9963cbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acetyl-CoA C-Acyltransferase - genetics</topic><topic>Acetyl-CoA C-Acyltransferase - metabolism</topic><topic>Acetyl-CoA Carboxylase - genetics</topic><topic>Acetyl-CoA Carboxylase - metabolism</topic><topic>Aged</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Blotting, Western</topic><topic>Cell Hypoxia</topic><topic>Cell Line, Tumor</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Colorectal Neoplasms - metabolism</topic><topic>Colorectal Neoplasms - pathology</topic><topic>Fatty Acids - biosynthesis</topic><topic>Female</topic><topic>Genomics - methods</topic><topic>HCT116 Cells</topic><topic>Humans</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Lipid Metabolism</topic><topic>Lipids - biosynthesis</topic><topic>Male</topic><topic>Metabolomics - methods</topic><topic>Middle Aged</topic><topic>Platelet Activating Factor - genetics</topic><topic>Platelet Activating Factor - metabolism</topic><topic>Priority Research Paper</topic><topic>Proteomics - methods</topic><topic>RNA Interference</topic><topic>Signal Transduction</topic><toplevel>online_resources</toplevel><creatorcontrib>Valli, Alessandro</creatorcontrib><creatorcontrib>Rodriguez, Miguel</creatorcontrib><creatorcontrib>Moutsianas, Loukas</creatorcontrib><creatorcontrib>Fischer, Roman</creatorcontrib><creatorcontrib>Fedele, Vita</creatorcontrib><creatorcontrib>Huang, Hong-Lei</creatorcontrib><creatorcontrib>Van Stiphout, Ruud</creatorcontrib><creatorcontrib>Jones, Dylan</creatorcontrib><creatorcontrib>Mccarthy, Michael</creatorcontrib><creatorcontrib>Vinaxia, Maria</creatorcontrib><creatorcontrib>Igarashi, Kaori</creatorcontrib><creatorcontrib>Sato, Maya</creatorcontrib><creatorcontrib>Soga, Tomoyoshi</creatorcontrib><creatorcontrib>Buffa, Francesca</creatorcontrib><creatorcontrib>Mccullagh, James</creatorcontrib><creatorcontrib>Yanes, Oscar</creatorcontrib><creatorcontrib>Harris, Adrian</creatorcontrib><creatorcontrib>Kessler, Benedikt</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncotarget</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valli, Alessandro</au><au>Rodriguez, Miguel</au><au>Moutsianas, Loukas</au><au>Fischer, Roman</au><au>Fedele, Vita</au><au>Huang, Hong-Lei</au><au>Van Stiphout, Ruud</au><au>Jones, Dylan</au><au>Mccarthy, Michael</au><au>Vinaxia, Maria</au><au>Igarashi, Kaori</au><au>Sato, Maya</au><au>Soga, Tomoyoshi</au><au>Buffa, Francesca</au><au>Mccullagh, James</au><au>Yanes, Oscar</au><au>Harris, Adrian</au><au>Kessler, Benedikt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxia induces a lipogenic cancer cell phenotype via HIF1α-dependent and -independent pathways</atitle><jtitle>Oncotarget</jtitle><addtitle>Oncotarget</addtitle><date>2015-02-10</date><risdate>2015</risdate><volume>6</volume><issue>4</issue><spage>1920</spage><epage>1941</epage><pages>1920-1941</pages><issn>1949-2553</issn><eissn>1949-2553</eissn><abstract>The biochemistry of cancer cells diverges significantly from normal cells as a result of a comprehensive reprogramming of metabolic pathways. A major factor influencing cancer metabolism is hypoxia, which is mediated by HIF1α and HIF2α. HIF1α represents one of the principal regulators of metabolism and energetic balance in cancer cells through its regulation of glycolysis, glycogen synthesis, Krebs cycle and the pentose phosphate shunt. However, less is known about the role of HIF1α in modulating lipid metabolism. Lipids serve cancer cells to provide molecules acting as oncogenic signals, energetic reserve, precursors for new membrane synthesis and to balance redox biological reactions. To study the role of HIF1α in these processes, we used HCT116 colorectal cancer cells expressing endogenous HIF1α and cells in which the hif1α gene was deleted to characterize HIF1α-dependent and independent effects on hypoxia regulated lipid metabolites. Untargeted metabolomics integrated with proteomics revealed that hypoxia induced many changes in lipids metabolites. Enzymatic steps in fatty acid synthesis and the Kennedy pathway were modified in a HIF1α-dependent fashion. Palmitate, stearate, PLD3 and PAFC16 were regulated in a HIF-independent manner. Our results demonstrate the impact of hypoxia on lipid metabolites, of which a distinct subset is regulated by HIF1α.</abstract><cop>United States</cop><pub>Impact Journals LLC</pub><pmid>25605240</pmid><doi>10.18632/oncotarget.3058</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-2553
ispartof Oncotarget, 2015-02, Vol.6 (4), p.1920-1941
issn 1949-2553
1949-2553
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4385826
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free E- Journals; PubMed Central Open Access
subjects Acetyl-CoA C-Acyltransferase - genetics
Acetyl-CoA C-Acyltransferase - metabolism
Acetyl-CoA Carboxylase - genetics
Acetyl-CoA Carboxylase - metabolism
Aged
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
Blotting, Western
Cell Hypoxia
Cell Line, Tumor
Colorectal Neoplasms - genetics
Colorectal Neoplasms - metabolism
Colorectal Neoplasms - pathology
Fatty Acids - biosynthesis
Female
Genomics - methods
HCT116 Cells
Humans
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Lipid Metabolism
Lipids - biosynthesis
Male
Metabolomics - methods
Middle Aged
Platelet Activating Factor - genetics
Platelet Activating Factor - metabolism
Priority Research Paper
Proteomics - methods
RNA Interference
Signal Transduction
title Hypoxia induces a lipogenic cancer cell phenotype via HIF1α-dependent and -independent pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxia%20induces%20a%20lipogenic%20cancer%20cell%20phenotype%20via%20HIF1%CE%B1-dependent%20and%20-independent%20pathways&rft.jtitle=Oncotarget&rft.au=Valli,%20Alessandro&rft.date=2015-02-10&rft.volume=6&rft.issue=4&rft.spage=1920&rft.epage=1941&rft.pages=1920-1941&rft.issn=1949-2553&rft.eissn=1949-2553&rft_id=info:doi/10.18632/oncotarget.3058&rft_dat=%3Cproquest_pubme%3E1657321004%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1657321004&rft_id=info:pmid/25605240&rfr_iscdi=true