Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains
Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however,...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-03, Vol.6 (1), p.6466-6466, Article 6466 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6466 |
---|---|
container_issue | 1 |
container_start_page | 6466 |
container_title | Nature communications |
container_volume | 6 |
creator | Gu, Zheng Nowakowski, Mark E. Carlton, David B. Storz, Ralph Im, Mi-Young Hong, Jeongmin Chao, Weilun Lambson, Brian Bennett, Patrick Alam, Mohmmad T. Marcus, Matthew A. Doran, Andrew Young, Anthony Scholl, Andreas Fischer, Peter Bokor, Jeffrey |
description | Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolved photoemission electron microscopy after applying nanosecond magnetic field pulses. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.
Closely-spaced anisotropically-engineered single-domain nanomagnets may be exploited to encode and transmit binary information. Here, Gu
et al
. use time-resolved X-ray microscopy to image signal propagation at the intrinsic nanomagnetic switching limit in permalloy nanomagnet chains. |
doi_str_mv | 10.1038/ncomms7466 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4382687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3665122991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-7aca37d61ae4a6edfacdf1a7aaa47ac78c5ba536644af95095fc4c0c49a2f9a73</originalsourceid><addsrcrecordid>eNplkU1v1DAQhi1ERavSCz8ARXBBRSl2_JVckFBFAalSDy1na9aZZF0l9mI7SP33ONpSFvDBtvw-8854hpBXjF4wytsP3oZ5Tloo9YycNFSwmumGPz-4H5OzlO5pWbxjrRAvyHEjdYlo2Am5u102tQcfEtrg-yq50cNU7WLYwQjZBV85X4F3KeTy9lCjH51HjNhXa9gMo8fsbDWFsex2C86nl-RogCnh2eN5Sr5ffb67_Fpf33z5dvnpuraSy1xrsMB1rxigAIX9ALYfGGgAEEXTrZUbkFwpIWDoJO3kYIWlVnTQDB1ofko-7n13y2bG3qLPESazi26G-GACOPO34t3WjOGnEbxtVLsavNkbhJSdSdZltNvSB482G9ZIRVlToHePWWL4sWDKZnbJ4jSBx7Akw9YChaScF_TtP-h9WGJp6EppqbigXBXqfE_ZGFKKODxVzKhZh2r-DLXArw__-IT-HmEB3u-BVCQ_YjzI-b_dL7xIry4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675634036</pqid></control><display><type>article</type><title>Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Gu, Zheng ; Nowakowski, Mark E. ; Carlton, David B. ; Storz, Ralph ; Im, Mi-Young ; Hong, Jeongmin ; Chao, Weilun ; Lambson, Brian ; Bennett, Patrick ; Alam, Mohmmad T. ; Marcus, Matthew A. ; Doran, Andrew ; Young, Anthony ; Scholl, Andreas ; Fischer, Peter ; Bokor, Jeffrey</creator><creatorcontrib>Gu, Zheng ; Nowakowski, Mark E. ; Carlton, David B. ; Storz, Ralph ; Im, Mi-Young ; Hong, Jeongmin ; Chao, Weilun ; Lambson, Brian ; Bennett, Patrick ; Alam, Mohmmad T. ; Marcus, Matthew A. ; Doran, Andrew ; Young, Anthony ; Scholl, Andreas ; Fischer, Peter ; Bokor, Jeffrey ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolved photoemission electron microscopy after applying nanosecond magnetic field pulses. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.
Closely-spaced anisotropically-engineered single-domain nanomagnets may be exploited to encode and transmit binary information. Here, Gu
et al
. use time-resolved X-ray microscopy to image signal propagation at the intrinsic nanomagnetic switching limit in permalloy nanomagnet chains.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms7466</identifier><identifier>PMID: 25774621</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/146 ; 639/166 ; 639/766/25 ; 639/925/357/997 ; Anisotropy ; Electrons ; Energy dissipation ; Humanities and Social Sciences ; Logic ; MATHEMATICS AND COMPUTING ; Microscopy ; multidisciplinary ; Propagation ; Science ; Science (multidisciplinary) ; X-rays</subject><ispartof>Nature communications, 2015-03, Vol.6 (1), p.6466-6466, Article 6466</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Mar 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-7aca37d61ae4a6edfacdf1a7aaa47ac78c5ba536644af95095fc4c0c49a2f9a73</citedby><cites>FETCH-LOGICAL-c535t-7aca37d61ae4a6edfacdf1a7aaa47ac78c5ba536644af95095fc4c0c49a2f9a73</cites><orcidid>0000-0002-8639-3620 ; 0000-0002-9824-9343 ; 0000000298249343 ; 0000000286393620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382687/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382687/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25774621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1256012$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Zheng</creatorcontrib><creatorcontrib>Nowakowski, Mark E.</creatorcontrib><creatorcontrib>Carlton, David B.</creatorcontrib><creatorcontrib>Storz, Ralph</creatorcontrib><creatorcontrib>Im, Mi-Young</creatorcontrib><creatorcontrib>Hong, Jeongmin</creatorcontrib><creatorcontrib>Chao, Weilun</creatorcontrib><creatorcontrib>Lambson, Brian</creatorcontrib><creatorcontrib>Bennett, Patrick</creatorcontrib><creatorcontrib>Alam, Mohmmad T.</creatorcontrib><creatorcontrib>Marcus, Matthew A.</creatorcontrib><creatorcontrib>Doran, Andrew</creatorcontrib><creatorcontrib>Young, Anthony</creatorcontrib><creatorcontrib>Scholl, Andreas</creatorcontrib><creatorcontrib>Fischer, Peter</creatorcontrib><creatorcontrib>Bokor, Jeffrey</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolved photoemission electron microscopy after applying nanosecond magnetic field pulses. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.
Closely-spaced anisotropically-engineered single-domain nanomagnets may be exploited to encode and transmit binary information. Here, Gu
et al
. use time-resolved X-ray microscopy to image signal propagation at the intrinsic nanomagnetic switching limit in permalloy nanomagnet chains.</description><subject>140/146</subject><subject>639/166</subject><subject>639/766/25</subject><subject>639/925/357/997</subject><subject>Anisotropy</subject><subject>Electrons</subject><subject>Energy dissipation</subject><subject>Humanities and Social Sciences</subject><subject>Logic</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Propagation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>X-rays</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU1v1DAQhi1ERavSCz8ARXBBRSl2_JVckFBFAalSDy1na9aZZF0l9mI7SP33ONpSFvDBtvw-8854hpBXjF4wytsP3oZ5Tloo9YycNFSwmumGPz-4H5OzlO5pWbxjrRAvyHEjdYlo2Am5u102tQcfEtrg-yq50cNU7WLYwQjZBV85X4F3KeTy9lCjH51HjNhXa9gMo8fsbDWFsex2C86nl-RogCnh2eN5Sr5ffb67_Fpf33z5dvnpuraSy1xrsMB1rxigAIX9ALYfGGgAEEXTrZUbkFwpIWDoJO3kYIWlVnTQDB1ofko-7n13y2bG3qLPESazi26G-GACOPO34t3WjOGnEbxtVLsavNkbhJSdSdZltNvSB482G9ZIRVlToHePWWL4sWDKZnbJ4jSBx7Akw9YChaScF_TtP-h9WGJp6EppqbigXBXqfE_ZGFKKODxVzKhZh2r-DLXArw__-IT-HmEB3u-BVCQ_YjzI-b_dL7xIry4</recordid><startdate>20150316</startdate><enddate>20150316</enddate><creator>Gu, Zheng</creator><creator>Nowakowski, Mark E.</creator><creator>Carlton, David B.</creator><creator>Storz, Ralph</creator><creator>Im, Mi-Young</creator><creator>Hong, Jeongmin</creator><creator>Chao, Weilun</creator><creator>Lambson, Brian</creator><creator>Bennett, Patrick</creator><creator>Alam, Mohmmad T.</creator><creator>Marcus, Matthew A.</creator><creator>Doran, Andrew</creator><creator>Young, Anthony</creator><creator>Scholl, Andreas</creator><creator>Fischer, Peter</creator><creator>Bokor, Jeffrey</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8639-3620</orcidid><orcidid>https://orcid.org/0000-0002-9824-9343</orcidid><orcidid>https://orcid.org/0000000298249343</orcidid><orcidid>https://orcid.org/0000000286393620</orcidid></search><sort><creationdate>20150316</creationdate><title>Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains</title><author>Gu, Zheng ; Nowakowski, Mark E. ; Carlton, David B. ; Storz, Ralph ; Im, Mi-Young ; Hong, Jeongmin ; Chao, Weilun ; Lambson, Brian ; Bennett, Patrick ; Alam, Mohmmad T. ; Marcus, Matthew A. ; Doran, Andrew ; Young, Anthony ; Scholl, Andreas ; Fischer, Peter ; Bokor, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-7aca37d61ae4a6edfacdf1a7aaa47ac78c5ba536644af95095fc4c0c49a2f9a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>140/146</topic><topic>639/166</topic><topic>639/766/25</topic><topic>639/925/357/997</topic><topic>Anisotropy</topic><topic>Electrons</topic><topic>Energy dissipation</topic><topic>Humanities and Social Sciences</topic><topic>Logic</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Propagation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Zheng</creatorcontrib><creatorcontrib>Nowakowski, Mark E.</creatorcontrib><creatorcontrib>Carlton, David B.</creatorcontrib><creatorcontrib>Storz, Ralph</creatorcontrib><creatorcontrib>Im, Mi-Young</creatorcontrib><creatorcontrib>Hong, Jeongmin</creatorcontrib><creatorcontrib>Chao, Weilun</creatorcontrib><creatorcontrib>Lambson, Brian</creatorcontrib><creatorcontrib>Bennett, Patrick</creatorcontrib><creatorcontrib>Alam, Mohmmad T.</creatorcontrib><creatorcontrib>Marcus, Matthew A.</creatorcontrib><creatorcontrib>Doran, Andrew</creatorcontrib><creatorcontrib>Young, Anthony</creatorcontrib><creatorcontrib>Scholl, Andreas</creatorcontrib><creatorcontrib>Fischer, Peter</creatorcontrib><creatorcontrib>Bokor, Jeffrey</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Zheng</au><au>Nowakowski, Mark E.</au><au>Carlton, David B.</au><au>Storz, Ralph</au><au>Im, Mi-Young</au><au>Hong, Jeongmin</au><au>Chao, Weilun</au><au>Lambson, Brian</au><au>Bennett, Patrick</au><au>Alam, Mohmmad T.</au><au>Marcus, Matthew A.</au><au>Doran, Andrew</au><au>Young, Anthony</au><au>Scholl, Andreas</au><au>Fischer, Peter</au><au>Bokor, Jeffrey</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-03-16</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>6466</spage><epage>6466</epage><pages>6466-6466</pages><artnum>6466</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolved photoemission electron microscopy after applying nanosecond magnetic field pulses. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.
Closely-spaced anisotropically-engineered single-domain nanomagnets may be exploited to encode and transmit binary information. Here, Gu
et al
. use time-resolved X-ray microscopy to image signal propagation at the intrinsic nanomagnetic switching limit in permalloy nanomagnet chains.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25774621</pmid><doi>10.1038/ncomms7466</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8639-3620</orcidid><orcidid>https://orcid.org/0000-0002-9824-9343</orcidid><orcidid>https://orcid.org/0000000298249343</orcidid><orcidid>https://orcid.org/0000000286393620</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2015-03, Vol.6 (1), p.6466-6466, Article 6466 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4382687 |
source | Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals |
subjects | 140/146 639/166 639/766/25 639/925/357/997 Anisotropy Electrons Energy dissipation Humanities and Social Sciences Logic MATHEMATICS AND COMPUTING Microscopy multidisciplinary Propagation Science Science (multidisciplinary) X-rays |
title | Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-nanosecond%20signal%20propagation%20in%20anisotropy-engineered%20nanomagnetic%20logic%20chains&rft.jtitle=Nature%20communications&rft.au=Gu,%20Zheng&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2015-03-16&rft.volume=6&rft.issue=1&rft.spage=6466&rft.epage=6466&rft.pages=6466-6466&rft.artnum=6466&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms7466&rft_dat=%3Cproquest_pubme%3E3665122991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675634036&rft_id=info:pmid/25774621&rfr_iscdi=true |