Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains

Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-03, Vol.6 (1), p.6466-6466, Article 6466
Hauptverfasser: Gu, Zheng, Nowakowski, Mark E., Carlton, David B., Storz, Ralph, Im, Mi-Young, Hong, Jeongmin, Chao, Weilun, Lambson, Brian, Bennett, Patrick, Alam, Mohmmad T., Marcus, Matthew A., Doran, Andrew, Young, Anthony, Scholl, Andreas, Fischer, Peter, Bokor, Jeffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6466
container_issue 1
container_start_page 6466
container_title Nature communications
container_volume 6
creator Gu, Zheng
Nowakowski, Mark E.
Carlton, David B.
Storz, Ralph
Im, Mi-Young
Hong, Jeongmin
Chao, Weilun
Lambson, Brian
Bennett, Patrick
Alam, Mohmmad T.
Marcus, Matthew A.
Doran, Andrew
Young, Anthony
Scholl, Andreas
Fischer, Peter
Bokor, Jeffrey
description Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolved photoemission electron microscopy after applying nanosecond magnetic field pulses. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability. Closely-spaced anisotropically-engineered single-domain nanomagnets may be exploited to encode and transmit binary information. Here, Gu et al . use time-resolved X-ray microscopy to image signal propagation at the intrinsic nanomagnetic switching limit in permalloy nanomagnet chains.
doi_str_mv 10.1038/ncomms7466
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4382687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3665122991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-7aca37d61ae4a6edfacdf1a7aaa47ac78c5ba536644af95095fc4c0c49a2f9a73</originalsourceid><addsrcrecordid>eNplkU1v1DAQhi1ERavSCz8ARXBBRSl2_JVckFBFAalSDy1na9aZZF0l9mI7SP33ONpSFvDBtvw-8854hpBXjF4wytsP3oZ5Tloo9YycNFSwmumGPz-4H5OzlO5pWbxjrRAvyHEjdYlo2Am5u102tQcfEtrg-yq50cNU7WLYwQjZBV85X4F3KeTy9lCjH51HjNhXa9gMo8fsbDWFsex2C86nl-RogCnh2eN5Sr5ffb67_Fpf33z5dvnpuraSy1xrsMB1rxigAIX9ALYfGGgAEEXTrZUbkFwpIWDoJO3kYIWlVnTQDB1ofko-7n13y2bG3qLPESazi26G-GACOPO34t3WjOGnEbxtVLsavNkbhJSdSdZltNvSB482G9ZIRVlToHePWWL4sWDKZnbJ4jSBx7Akw9YChaScF_TtP-h9WGJp6EppqbigXBXqfE_ZGFKKODxVzKhZh2r-DLXArw__-IT-HmEB3u-BVCQ_YjzI-b_dL7xIry4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675634036</pqid></control><display><type>article</type><title>Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Gu, Zheng ; Nowakowski, Mark E. ; Carlton, David B. ; Storz, Ralph ; Im, Mi-Young ; Hong, Jeongmin ; Chao, Weilun ; Lambson, Brian ; Bennett, Patrick ; Alam, Mohmmad T. ; Marcus, Matthew A. ; Doran, Andrew ; Young, Anthony ; Scholl, Andreas ; Fischer, Peter ; Bokor, Jeffrey</creator><creatorcontrib>Gu, Zheng ; Nowakowski, Mark E. ; Carlton, David B. ; Storz, Ralph ; Im, Mi-Young ; Hong, Jeongmin ; Chao, Weilun ; Lambson, Brian ; Bennett, Patrick ; Alam, Mohmmad T. ; Marcus, Matthew A. ; Doran, Andrew ; Young, Anthony ; Scholl, Andreas ; Fischer, Peter ; Bokor, Jeffrey ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolved photoemission electron microscopy after applying nanosecond magnetic field pulses. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability. Closely-spaced anisotropically-engineered single-domain nanomagnets may be exploited to encode and transmit binary information. Here, Gu et al . use time-resolved X-ray microscopy to image signal propagation at the intrinsic nanomagnetic switching limit in permalloy nanomagnet chains.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms7466</identifier><identifier>PMID: 25774621</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/146 ; 639/166 ; 639/766/25 ; 639/925/357/997 ; Anisotropy ; Electrons ; Energy dissipation ; Humanities and Social Sciences ; Logic ; MATHEMATICS AND COMPUTING ; Microscopy ; multidisciplinary ; Propagation ; Science ; Science (multidisciplinary) ; X-rays</subject><ispartof>Nature communications, 2015-03, Vol.6 (1), p.6466-6466, Article 6466</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Mar 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-7aca37d61ae4a6edfacdf1a7aaa47ac78c5ba536644af95095fc4c0c49a2f9a73</citedby><cites>FETCH-LOGICAL-c535t-7aca37d61ae4a6edfacdf1a7aaa47ac78c5ba536644af95095fc4c0c49a2f9a73</cites><orcidid>0000-0002-8639-3620 ; 0000-0002-9824-9343 ; 0000000298249343 ; 0000000286393620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382687/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382687/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25774621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1256012$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Zheng</creatorcontrib><creatorcontrib>Nowakowski, Mark E.</creatorcontrib><creatorcontrib>Carlton, David B.</creatorcontrib><creatorcontrib>Storz, Ralph</creatorcontrib><creatorcontrib>Im, Mi-Young</creatorcontrib><creatorcontrib>Hong, Jeongmin</creatorcontrib><creatorcontrib>Chao, Weilun</creatorcontrib><creatorcontrib>Lambson, Brian</creatorcontrib><creatorcontrib>Bennett, Patrick</creatorcontrib><creatorcontrib>Alam, Mohmmad T.</creatorcontrib><creatorcontrib>Marcus, Matthew A.</creatorcontrib><creatorcontrib>Doran, Andrew</creatorcontrib><creatorcontrib>Young, Anthony</creatorcontrib><creatorcontrib>Scholl, Andreas</creatorcontrib><creatorcontrib>Fischer, Peter</creatorcontrib><creatorcontrib>Bokor, Jeffrey</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolved photoemission electron microscopy after applying nanosecond magnetic field pulses. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability. Closely-spaced anisotropically-engineered single-domain nanomagnets may be exploited to encode and transmit binary information. Here, Gu et al . use time-resolved X-ray microscopy to image signal propagation at the intrinsic nanomagnetic switching limit in permalloy nanomagnet chains.</description><subject>140/146</subject><subject>639/166</subject><subject>639/766/25</subject><subject>639/925/357/997</subject><subject>Anisotropy</subject><subject>Electrons</subject><subject>Energy dissipation</subject><subject>Humanities and Social Sciences</subject><subject>Logic</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Propagation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>X-rays</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU1v1DAQhi1ERavSCz8ARXBBRSl2_JVckFBFAalSDy1na9aZZF0l9mI7SP33ONpSFvDBtvw-8854hpBXjF4wytsP3oZ5Tloo9YycNFSwmumGPz-4H5OzlO5pWbxjrRAvyHEjdYlo2Am5u102tQcfEtrg-yq50cNU7WLYwQjZBV85X4F3KeTy9lCjH51HjNhXa9gMo8fsbDWFsex2C86nl-RogCnh2eN5Sr5ffb67_Fpf33z5dvnpuraSy1xrsMB1rxigAIX9ALYfGGgAEEXTrZUbkFwpIWDoJO3kYIWlVnTQDB1ofko-7n13y2bG3qLPESazi26G-GACOPO34t3WjOGnEbxtVLsavNkbhJSdSdZltNvSB482G9ZIRVlToHePWWL4sWDKZnbJ4jSBx7Akw9YChaScF_TtP-h9WGJp6EppqbigXBXqfE_ZGFKKODxVzKhZh2r-DLXArw__-IT-HmEB3u-BVCQ_YjzI-b_dL7xIry4</recordid><startdate>20150316</startdate><enddate>20150316</enddate><creator>Gu, Zheng</creator><creator>Nowakowski, Mark E.</creator><creator>Carlton, David B.</creator><creator>Storz, Ralph</creator><creator>Im, Mi-Young</creator><creator>Hong, Jeongmin</creator><creator>Chao, Weilun</creator><creator>Lambson, Brian</creator><creator>Bennett, Patrick</creator><creator>Alam, Mohmmad T.</creator><creator>Marcus, Matthew A.</creator><creator>Doran, Andrew</creator><creator>Young, Anthony</creator><creator>Scholl, Andreas</creator><creator>Fischer, Peter</creator><creator>Bokor, Jeffrey</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8639-3620</orcidid><orcidid>https://orcid.org/0000-0002-9824-9343</orcidid><orcidid>https://orcid.org/0000000298249343</orcidid><orcidid>https://orcid.org/0000000286393620</orcidid></search><sort><creationdate>20150316</creationdate><title>Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains</title><author>Gu, Zheng ; Nowakowski, Mark E. ; Carlton, David B. ; Storz, Ralph ; Im, Mi-Young ; Hong, Jeongmin ; Chao, Weilun ; Lambson, Brian ; Bennett, Patrick ; Alam, Mohmmad T. ; Marcus, Matthew A. ; Doran, Andrew ; Young, Anthony ; Scholl, Andreas ; Fischer, Peter ; Bokor, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-7aca37d61ae4a6edfacdf1a7aaa47ac78c5ba536644af95095fc4c0c49a2f9a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>140/146</topic><topic>639/166</topic><topic>639/766/25</topic><topic>639/925/357/997</topic><topic>Anisotropy</topic><topic>Electrons</topic><topic>Energy dissipation</topic><topic>Humanities and Social Sciences</topic><topic>Logic</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Propagation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Zheng</creatorcontrib><creatorcontrib>Nowakowski, Mark E.</creatorcontrib><creatorcontrib>Carlton, David B.</creatorcontrib><creatorcontrib>Storz, Ralph</creatorcontrib><creatorcontrib>Im, Mi-Young</creatorcontrib><creatorcontrib>Hong, Jeongmin</creatorcontrib><creatorcontrib>Chao, Weilun</creatorcontrib><creatorcontrib>Lambson, Brian</creatorcontrib><creatorcontrib>Bennett, Patrick</creatorcontrib><creatorcontrib>Alam, Mohmmad T.</creatorcontrib><creatorcontrib>Marcus, Matthew A.</creatorcontrib><creatorcontrib>Doran, Andrew</creatorcontrib><creatorcontrib>Young, Anthony</creatorcontrib><creatorcontrib>Scholl, Andreas</creatorcontrib><creatorcontrib>Fischer, Peter</creatorcontrib><creatorcontrib>Bokor, Jeffrey</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Zheng</au><au>Nowakowski, Mark E.</au><au>Carlton, David B.</au><au>Storz, Ralph</au><au>Im, Mi-Young</au><au>Hong, Jeongmin</au><au>Chao, Weilun</au><au>Lambson, Brian</au><au>Bennett, Patrick</au><au>Alam, Mohmmad T.</au><au>Marcus, Matthew A.</au><au>Doran, Andrew</au><au>Young, Anthony</au><au>Scholl, Andreas</au><au>Fischer, Peter</au><au>Bokor, Jeffrey</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-03-16</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>6466</spage><epage>6466</epage><pages>6466-6466</pages><artnum>6466</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolved photoemission electron microscopy after applying nanosecond magnetic field pulses. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability. Closely-spaced anisotropically-engineered single-domain nanomagnets may be exploited to encode and transmit binary information. Here, Gu et al . use time-resolved X-ray microscopy to image signal propagation at the intrinsic nanomagnetic switching limit in permalloy nanomagnet chains.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25774621</pmid><doi>10.1038/ncomms7466</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8639-3620</orcidid><orcidid>https://orcid.org/0000-0002-9824-9343</orcidid><orcidid>https://orcid.org/0000000298249343</orcidid><orcidid>https://orcid.org/0000000286393620</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2015-03, Vol.6 (1), p.6466-6466, Article 6466
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4382687
source Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects 140/146
639/166
639/766/25
639/925/357/997
Anisotropy
Electrons
Energy dissipation
Humanities and Social Sciences
Logic
MATHEMATICS AND COMPUTING
Microscopy
multidisciplinary
Propagation
Science
Science (multidisciplinary)
X-rays
title Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-nanosecond%20signal%20propagation%20in%20anisotropy-engineered%20nanomagnetic%20logic%20chains&rft.jtitle=Nature%20communications&rft.au=Gu,%20Zheng&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2015-03-16&rft.volume=6&rft.issue=1&rft.spage=6466&rft.epage=6466&rft.pages=6466-6466&rft.artnum=6466&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms7466&rft_dat=%3Cproquest_pubme%3E3665122991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675634036&rft_id=info:pmid/25774621&rfr_iscdi=true