Posttranslational Modifications in Microcin B17 Define an Additional Class of DNA Gyrase Inhibitor
Drugs that inhibit the activity of DNA gyrase fall almost exclusively into two structural classes, the quinolones and the coumarins. A third class of DNA gyrase inhibitor is defined by the ribosomally synthesized peptide antibiotic microcin B17 (MccB17). MccB17 contains 43 amino acid residues, but 1...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1994-05, Vol.91 (10), p.4519-4523 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4523 |
---|---|
container_issue | 10 |
container_start_page | 4519 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 91 |
creator | Yorgey, Peter Lee, Jonathan Kordel, Johann Vivas, Eugenio Warner, Philip Jebaratnam, David Kolter, Roberto |
description | Drugs that inhibit the activity of DNA gyrase fall almost exclusively into two structural classes, the quinolones and the coumarins. A third class of DNA gyrase inhibitor is defined by the ribosomally synthesized peptide antibiotic microcin B17 (MccB17). MccB17 contains 43 amino acid residues, but 14 of these are posttranslationally modified. Here we describe the characterization of the structure of these modifications. We propose that four cysteine and four serine side chains undergo condensation with the carbonyl group of the preceding residue, followed by α/β dehydrogenation to yield four thiazole and four oxazole rings, respectively. The three proteins implicated in catalyzing these modifications (McbBCD) would constitute the only thiazole/oxazole biosynthetic enzymes identified. These results open up possibilities for the design of DNA gyrase inhibitors and add to the repertoire of posttranslational modifications with potential for protein engineering. Escherichia coli sbmA mutants, which lack the inner membrane protein (SbmA) involved in MccB17 uptake, were found to be resistant to bleomycin. Bleomycin is structurally unrelated to MccB17 except for the fact that it contains two thiazole rings. This suggests that thiazole rings are part of the MccB17 structure recognized by SbmA. This observation and the finding that SbmA homologs are widely conserved and can play developmental roles [Glazebrook, J., Ichige, A. \& Walker, G. C. (1993) Genes Dev. 7, 1485-1497] suggest that thiazole- and oxazole-containing compounds may serve as signaling molecules for a wide variety of bacteria in diverse environments, including pathogen interactions with plant and animal hosts. |
doi_str_mv | 10.1073/pnas.91.10.4519 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_43817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2364688</jstor_id><sourcerecordid>2364688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-35780ab70cd11bb61f0332c5441553de9061dff158c6cbc7d869a146b4ebcf1a3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EKtvCmQsgiwOcsvXEjj8kLssWSqUWOMDZchybepWNt3GC2v8ehw0rygFO9uj93mhmHkLPgCyBCHq660xaKsjFklWgHqAFEAUFZ4o8RAtCSlFIVrLH6DilDSFEVZIcoSMJkioGC1R_iWkYetOl1gwhdqbFV7EJPthfZcKhw1fB9tHmzzsQ-Mz50DlsOrxqmjBb1q1JCUePzz6t8Pldb5LDF911qMMQ-yfokTdtck_n9wR9-_D-6_pjcfn5_GK9uixsJflQ0EpIYmpBbANQ1xw8obS0FWNQVbRxinBovIdKWm5rKxrJlQHGa-Zq68HQE_R233c31lvXWNflvVq968PW9Hc6mqDvK1241t_jD82oBJHtr2d7H29Glwa9Dcm6tjWdi2PSgjPJKaj_gsAFEbKcwFd_gZs49vleSZcEKFFcQIZO91C-cUq984eBgegpYj1FrBVM9RRxdrz4c88DP2ea9ZezPhl_q_cavPknoP3YtoO7HTL5fE9uUg7ygJaUMy4l_QnrhMQC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201309671</pqid></control><display><type>article</type><title>Posttranslational Modifications in Microcin B17 Define an Additional Class of DNA Gyrase Inhibitor</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yorgey, Peter ; Lee, Jonathan ; Kordel, Johann ; Vivas, Eugenio ; Warner, Philip ; Jebaratnam, David ; Kolter, Roberto</creator><creatorcontrib>Yorgey, Peter ; Lee, Jonathan ; Kordel, Johann ; Vivas, Eugenio ; Warner, Philip ; Jebaratnam, David ; Kolter, Roberto</creatorcontrib><description>Drugs that inhibit the activity of DNA gyrase fall almost exclusively into two structural classes, the quinolones and the coumarins. A third class of DNA gyrase inhibitor is defined by the ribosomally synthesized peptide antibiotic microcin B17 (MccB17). MccB17 contains 43 amino acid residues, but 14 of these are posttranslationally modified. Here we describe the characterization of the structure of these modifications. We propose that four cysteine and four serine side chains undergo condensation with the carbonyl group of the preceding residue, followed by α/β dehydrogenation to yield four thiazole and four oxazole rings, respectively. The three proteins implicated in catalyzing these modifications (McbBCD) would constitute the only thiazole/oxazole biosynthetic enzymes identified. These results open up possibilities for the design of DNA gyrase inhibitors and add to the repertoire of posttranslational modifications with potential for protein engineering. Escherichia coli sbmA mutants, which lack the inner membrane protein (SbmA) involved in MccB17 uptake, were found to be resistant to bleomycin. Bleomycin is structurally unrelated to MccB17 except for the fact that it contains two thiazole rings. This suggests that thiazole rings are part of the MccB17 structure recognized by SbmA. This observation and the finding that SbmA homologs are widely conserved and can play developmental roles [Glazebrook, J., Ichige, A. \& Walker, G. C. (1993) Genes Dev. 7, 1485-1497] suggest that thiazole- and oxazole-containing compounds may serve as signaling molecules for a wide variety of bacteria in diverse environments, including pathogen interactions with plant and animal hosts.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.91.10.4519</identifier><identifier>PMID: 8183941</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amino Acid Sequence ; Amino acids ; Anti-Bacterial Agents - biosynthesis ; Anti-Bacterial Agents - chemistry ; Antibiotics ; Bacteriocins - biosynthesis ; Bacteriocins - chemistry ; Bacteriocins - isolation & purification ; Biochemistry ; Cysteine - analysis ; Deoxyribonucleic acid ; DNA ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Mass spectroscopy ; Molecular Sequence Data ; Music analysis ; Oxazoles ; Peptide Fragments - chemistry ; Peptide Fragments - isolation & purification ; Protein Conformation ; Protein Processing, Post-Translational ; Protons ; Quinolones ; Thiazoles ; Topoisomerase II Inhibitors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1994-05, Vol.91 (10), p.4519-4523</ispartof><rights>Copyright 1994 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 10, 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-35780ab70cd11bb61f0332c5441553de9061dff158c6cbc7d869a146b4ebcf1a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/91/10.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2364688$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2364688$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8183941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yorgey, Peter</creatorcontrib><creatorcontrib>Lee, Jonathan</creatorcontrib><creatorcontrib>Kordel, Johann</creatorcontrib><creatorcontrib>Vivas, Eugenio</creatorcontrib><creatorcontrib>Warner, Philip</creatorcontrib><creatorcontrib>Jebaratnam, David</creatorcontrib><creatorcontrib>Kolter, Roberto</creatorcontrib><title>Posttranslational Modifications in Microcin B17 Define an Additional Class of DNA Gyrase Inhibitor</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Drugs that inhibit the activity of DNA gyrase fall almost exclusively into two structural classes, the quinolones and the coumarins. A third class of DNA gyrase inhibitor is defined by the ribosomally synthesized peptide antibiotic microcin B17 (MccB17). MccB17 contains 43 amino acid residues, but 14 of these are posttranslationally modified. Here we describe the characterization of the structure of these modifications. We propose that four cysteine and four serine side chains undergo condensation with the carbonyl group of the preceding residue, followed by α/β dehydrogenation to yield four thiazole and four oxazole rings, respectively. The three proteins implicated in catalyzing these modifications (McbBCD) would constitute the only thiazole/oxazole biosynthetic enzymes identified. These results open up possibilities for the design of DNA gyrase inhibitors and add to the repertoire of posttranslational modifications with potential for protein engineering. Escherichia coli sbmA mutants, which lack the inner membrane protein (SbmA) involved in MccB17 uptake, were found to be resistant to bleomycin. Bleomycin is structurally unrelated to MccB17 except for the fact that it contains two thiazole rings. This suggests that thiazole rings are part of the MccB17 structure recognized by SbmA. This observation and the finding that SbmA homologs are widely conserved and can play developmental roles [Glazebrook, J., Ichige, A. \& Walker, G. C. (1993) Genes Dev. 7, 1485-1497] suggest that thiazole- and oxazole-containing compounds may serve as signaling molecules for a wide variety of bacteria in diverse environments, including pathogen interactions with plant and animal hosts.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Anti-Bacterial Agents - biosynthesis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Antibiotics</subject><subject>Bacteriocins - biosynthesis</subject><subject>Bacteriocins - chemistry</subject><subject>Bacteriocins - isolation & purification</subject><subject>Biochemistry</subject><subject>Cysteine - analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Molecular Sequence Data</subject><subject>Music analysis</subject><subject>Oxazoles</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - isolation & purification</subject><subject>Protein Conformation</subject><subject>Protein Processing, Post-Translational</subject><subject>Protons</subject><subject>Quinolones</subject><subject>Thiazoles</subject><subject>Topoisomerase II Inhibitors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EKtvCmQsgiwOcsvXEjj8kLssWSqUWOMDZchybepWNt3GC2v8ehw0rygFO9uj93mhmHkLPgCyBCHq660xaKsjFklWgHqAFEAUFZ4o8RAtCSlFIVrLH6DilDSFEVZIcoSMJkioGC1R_iWkYetOl1gwhdqbFV7EJPthfZcKhw1fB9tHmzzsQ-Mz50DlsOrxqmjBb1q1JCUePzz6t8Pldb5LDF911qMMQ-yfokTdtck_n9wR9-_D-6_pjcfn5_GK9uixsJflQ0EpIYmpBbANQ1xw8obS0FWNQVbRxinBovIdKWm5rKxrJlQHGa-Zq68HQE_R233c31lvXWNflvVq968PW9Hc6mqDvK1241t_jD82oBJHtr2d7H29Glwa9Dcm6tjWdi2PSgjPJKaj_gsAFEbKcwFd_gZs49vleSZcEKFFcQIZO91C-cUq984eBgegpYj1FrBVM9RRxdrz4c88DP2ea9ZezPhl_q_cavPknoP3YtoO7HTL5fE9uUg7ygJaUMy4l_QnrhMQC</recordid><startdate>19940510</startdate><enddate>19940510</enddate><creator>Yorgey, Peter</creator><creator>Lee, Jonathan</creator><creator>Kordel, Johann</creator><creator>Vivas, Eugenio</creator><creator>Warner, Philip</creator><creator>Jebaratnam, David</creator><creator>Kolter, Roberto</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19940510</creationdate><title>Posttranslational Modifications in Microcin B17 Define an Additional Class of DNA Gyrase Inhibitor</title><author>Yorgey, Peter ; Lee, Jonathan ; Kordel, Johann ; Vivas, Eugenio ; Warner, Philip ; Jebaratnam, David ; Kolter, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-35780ab70cd11bb61f0332c5441553de9061dff158c6cbc7d869a146b4ebcf1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Anti-Bacterial Agents - biosynthesis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Antibiotics</topic><topic>Bacteriocins - biosynthesis</topic><topic>Bacteriocins - chemistry</topic><topic>Bacteriocins - isolation & purification</topic><topic>Biochemistry</topic><topic>Cysteine - analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Molecular Sequence Data</topic><topic>Music analysis</topic><topic>Oxazoles</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - isolation & purification</topic><topic>Protein Conformation</topic><topic>Protein Processing, Post-Translational</topic><topic>Protons</topic><topic>Quinolones</topic><topic>Thiazoles</topic><topic>Topoisomerase II Inhibitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yorgey, Peter</creatorcontrib><creatorcontrib>Lee, Jonathan</creatorcontrib><creatorcontrib>Kordel, Johann</creatorcontrib><creatorcontrib>Vivas, Eugenio</creatorcontrib><creatorcontrib>Warner, Philip</creatorcontrib><creatorcontrib>Jebaratnam, David</creatorcontrib><creatorcontrib>Kolter, Roberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yorgey, Peter</au><au>Lee, Jonathan</au><au>Kordel, Johann</au><au>Vivas, Eugenio</au><au>Warner, Philip</au><au>Jebaratnam, David</au><au>Kolter, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Posttranslational Modifications in Microcin B17 Define an Additional Class of DNA Gyrase Inhibitor</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1994-05-10</date><risdate>1994</risdate><volume>91</volume><issue>10</issue><spage>4519</spage><epage>4523</epage><pages>4519-4523</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Drugs that inhibit the activity of DNA gyrase fall almost exclusively into two structural classes, the quinolones and the coumarins. A third class of DNA gyrase inhibitor is defined by the ribosomally synthesized peptide antibiotic microcin B17 (MccB17). MccB17 contains 43 amino acid residues, but 14 of these are posttranslationally modified. Here we describe the characterization of the structure of these modifications. We propose that four cysteine and four serine side chains undergo condensation with the carbonyl group of the preceding residue, followed by α/β dehydrogenation to yield four thiazole and four oxazole rings, respectively. The three proteins implicated in catalyzing these modifications (McbBCD) would constitute the only thiazole/oxazole biosynthetic enzymes identified. These results open up possibilities for the design of DNA gyrase inhibitors and add to the repertoire of posttranslational modifications with potential for protein engineering. Escherichia coli sbmA mutants, which lack the inner membrane protein (SbmA) involved in MccB17 uptake, were found to be resistant to bleomycin. Bleomycin is structurally unrelated to MccB17 except for the fact that it contains two thiazole rings. This suggests that thiazole rings are part of the MccB17 structure recognized by SbmA. This observation and the finding that SbmA homologs are widely conserved and can play developmental roles [Glazebrook, J., Ichige, A. \& Walker, G. C. (1993) Genes Dev. 7, 1485-1497] suggest that thiazole- and oxazole-containing compounds may serve as signaling molecules for a wide variety of bacteria in diverse environments, including pathogen interactions with plant and animal hosts.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8183941</pmid><doi>10.1073/pnas.91.10.4519</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1994-05, Vol.91 (10), p.4519-4523 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_43817 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Amino acids Anti-Bacterial Agents - biosynthesis Anti-Bacterial Agents - chemistry Antibiotics Bacteriocins - biosynthesis Bacteriocins - chemistry Bacteriocins - isolation & purification Biochemistry Cysteine - analysis Deoxyribonucleic acid DNA Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Magnetic Resonance Spectroscopy Mass Spectrometry Mass spectroscopy Molecular Sequence Data Music analysis Oxazoles Peptide Fragments - chemistry Peptide Fragments - isolation & purification Protein Conformation Protein Processing, Post-Translational Protons Quinolones Thiazoles Topoisomerase II Inhibitors |
title | Posttranslational Modifications in Microcin B17 Define an Additional Class of DNA Gyrase Inhibitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Posttranslational%20Modifications%20in%20Microcin%20B17%20Define%20an%20Additional%20Class%20of%20DNA%20Gyrase%20Inhibitor&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yorgey,%20Peter&rft.date=1994-05-10&rft.volume=91&rft.issue=10&rft.spage=4519&rft.epage=4523&rft.pages=4519-4523&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.91.10.4519&rft_dat=%3Cjstor_pubme%3E2364688%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201309671&rft_id=info:pmid/8183941&rft_jstor_id=2364688&rfr_iscdi=true |