Posttranslational Modifications in Microcin B17 Define an Additional Class of DNA Gyrase Inhibitor

Drugs that inhibit the activity of DNA gyrase fall almost exclusively into two structural classes, the quinolones and the coumarins. A third class of DNA gyrase inhibitor is defined by the ribosomally synthesized peptide antibiotic microcin B17 (MccB17). MccB17 contains 43 amino acid residues, but 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1994-05, Vol.91 (10), p.4519-4523
Hauptverfasser: Yorgey, Peter, Lee, Jonathan, Kordel, Johann, Vivas, Eugenio, Warner, Philip, Jebaratnam, David, Kolter, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4523
container_issue 10
container_start_page 4519
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 91
creator Yorgey, Peter
Lee, Jonathan
Kordel, Johann
Vivas, Eugenio
Warner, Philip
Jebaratnam, David
Kolter, Roberto
description Drugs that inhibit the activity of DNA gyrase fall almost exclusively into two structural classes, the quinolones and the coumarins. A third class of DNA gyrase inhibitor is defined by the ribosomally synthesized peptide antibiotic microcin B17 (MccB17). MccB17 contains 43 amino acid residues, but 14 of these are posttranslationally modified. Here we describe the characterization of the structure of these modifications. We propose that four cysteine and four serine side chains undergo condensation with the carbonyl group of the preceding residue, followed by α/β dehydrogenation to yield four thiazole and four oxazole rings, respectively. The three proteins implicated in catalyzing these modifications (McbBCD) would constitute the only thiazole/oxazole biosynthetic enzymes identified. These results open up possibilities for the design of DNA gyrase inhibitors and add to the repertoire of posttranslational modifications with potential for protein engineering. Escherichia coli sbmA mutants, which lack the inner membrane protein (SbmA) involved in MccB17 uptake, were found to be resistant to bleomycin. Bleomycin is structurally unrelated to MccB17 except for the fact that it contains two thiazole rings. This suggests that thiazole rings are part of the MccB17 structure recognized by SbmA. This observation and the finding that SbmA homologs are widely conserved and can play developmental roles [Glazebrook, J., Ichige, A. \& Walker, G. C. (1993) Genes Dev. 7, 1485-1497] suggest that thiazole- and oxazole-containing compounds may serve as signaling molecules for a wide variety of bacteria in diverse environments, including pathogen interactions with plant and animal hosts.
doi_str_mv 10.1073/pnas.91.10.4519
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_43817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2364688</jstor_id><sourcerecordid>2364688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-35780ab70cd11bb61f0332c5441553de9061dff158c6cbc7d869a146b4ebcf1a3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EKtvCmQsgiwOcsvXEjj8kLssWSqUWOMDZchybepWNt3GC2v8ehw0rygFO9uj93mhmHkLPgCyBCHq660xaKsjFklWgHqAFEAUFZ4o8RAtCSlFIVrLH6DilDSFEVZIcoSMJkioGC1R_iWkYetOl1gwhdqbFV7EJPthfZcKhw1fB9tHmzzsQ-Mz50DlsOrxqmjBb1q1JCUePzz6t8Pldb5LDF911qMMQ-yfokTdtck_n9wR9-_D-6_pjcfn5_GK9uixsJflQ0EpIYmpBbANQ1xw8obS0FWNQVbRxinBovIdKWm5rKxrJlQHGa-Zq68HQE_R233c31lvXWNflvVq968PW9Hc6mqDvK1241t_jD82oBJHtr2d7H29Glwa9Dcm6tjWdi2PSgjPJKaj_gsAFEbKcwFd_gZs49vleSZcEKFFcQIZO91C-cUq984eBgegpYj1FrBVM9RRxdrz4c88DP2ea9ZezPhl_q_cavPknoP3YtoO7HTL5fE9uUg7ygJaUMy4l_QnrhMQC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201309671</pqid></control><display><type>article</type><title>Posttranslational Modifications in Microcin B17 Define an Additional Class of DNA Gyrase Inhibitor</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yorgey, Peter ; Lee, Jonathan ; Kordel, Johann ; Vivas, Eugenio ; Warner, Philip ; Jebaratnam, David ; Kolter, Roberto</creator><creatorcontrib>Yorgey, Peter ; Lee, Jonathan ; Kordel, Johann ; Vivas, Eugenio ; Warner, Philip ; Jebaratnam, David ; Kolter, Roberto</creatorcontrib><description>Drugs that inhibit the activity of DNA gyrase fall almost exclusively into two structural classes, the quinolones and the coumarins. A third class of DNA gyrase inhibitor is defined by the ribosomally synthesized peptide antibiotic microcin B17 (MccB17). MccB17 contains 43 amino acid residues, but 14 of these are posttranslationally modified. Here we describe the characterization of the structure of these modifications. We propose that four cysteine and four serine side chains undergo condensation with the carbonyl group of the preceding residue, followed by α/β dehydrogenation to yield four thiazole and four oxazole rings, respectively. The three proteins implicated in catalyzing these modifications (McbBCD) would constitute the only thiazole/oxazole biosynthetic enzymes identified. These results open up possibilities for the design of DNA gyrase inhibitors and add to the repertoire of posttranslational modifications with potential for protein engineering. Escherichia coli sbmA mutants, which lack the inner membrane protein (SbmA) involved in MccB17 uptake, were found to be resistant to bleomycin. Bleomycin is structurally unrelated to MccB17 except for the fact that it contains two thiazole rings. This suggests that thiazole rings are part of the MccB17 structure recognized by SbmA. This observation and the finding that SbmA homologs are widely conserved and can play developmental roles [Glazebrook, J., Ichige, A. \&amp; Walker, G. C. (1993) Genes Dev. 7, 1485-1497] suggest that thiazole- and oxazole-containing compounds may serve as signaling molecules for a wide variety of bacteria in diverse environments, including pathogen interactions with plant and animal hosts.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.91.10.4519</identifier><identifier>PMID: 8183941</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amino Acid Sequence ; Amino acids ; Anti-Bacterial Agents - biosynthesis ; Anti-Bacterial Agents - chemistry ; Antibiotics ; Bacteriocins - biosynthesis ; Bacteriocins - chemistry ; Bacteriocins - isolation &amp; purification ; Biochemistry ; Cysteine - analysis ; Deoxyribonucleic acid ; DNA ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Mass spectroscopy ; Molecular Sequence Data ; Music analysis ; Oxazoles ; Peptide Fragments - chemistry ; Peptide Fragments - isolation &amp; purification ; Protein Conformation ; Protein Processing, Post-Translational ; Protons ; Quinolones ; Thiazoles ; Topoisomerase II Inhibitors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1994-05, Vol.91 (10), p.4519-4523</ispartof><rights>Copyright 1994 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 10, 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-35780ab70cd11bb61f0332c5441553de9061dff158c6cbc7d869a146b4ebcf1a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/91/10.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2364688$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2364688$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8183941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yorgey, Peter</creatorcontrib><creatorcontrib>Lee, Jonathan</creatorcontrib><creatorcontrib>Kordel, Johann</creatorcontrib><creatorcontrib>Vivas, Eugenio</creatorcontrib><creatorcontrib>Warner, Philip</creatorcontrib><creatorcontrib>Jebaratnam, David</creatorcontrib><creatorcontrib>Kolter, Roberto</creatorcontrib><title>Posttranslational Modifications in Microcin B17 Define an Additional Class of DNA Gyrase Inhibitor</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Drugs that inhibit the activity of DNA gyrase fall almost exclusively into two structural classes, the quinolones and the coumarins. A third class of DNA gyrase inhibitor is defined by the ribosomally synthesized peptide antibiotic microcin B17 (MccB17). MccB17 contains 43 amino acid residues, but 14 of these are posttranslationally modified. Here we describe the characterization of the structure of these modifications. We propose that four cysteine and four serine side chains undergo condensation with the carbonyl group of the preceding residue, followed by α/β dehydrogenation to yield four thiazole and four oxazole rings, respectively. The three proteins implicated in catalyzing these modifications (McbBCD) would constitute the only thiazole/oxazole biosynthetic enzymes identified. These results open up possibilities for the design of DNA gyrase inhibitors and add to the repertoire of posttranslational modifications with potential for protein engineering. Escherichia coli sbmA mutants, which lack the inner membrane protein (SbmA) involved in MccB17 uptake, were found to be resistant to bleomycin. Bleomycin is structurally unrelated to MccB17 except for the fact that it contains two thiazole rings. This suggests that thiazole rings are part of the MccB17 structure recognized by SbmA. This observation and the finding that SbmA homologs are widely conserved and can play developmental roles [Glazebrook, J., Ichige, A. \&amp; Walker, G. C. (1993) Genes Dev. 7, 1485-1497] suggest that thiazole- and oxazole-containing compounds may serve as signaling molecules for a wide variety of bacteria in diverse environments, including pathogen interactions with plant and animal hosts.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Anti-Bacterial Agents - biosynthesis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Antibiotics</subject><subject>Bacteriocins - biosynthesis</subject><subject>Bacteriocins - chemistry</subject><subject>Bacteriocins - isolation &amp; purification</subject><subject>Biochemistry</subject><subject>Cysteine - analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Molecular Sequence Data</subject><subject>Music analysis</subject><subject>Oxazoles</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - isolation &amp; purification</subject><subject>Protein Conformation</subject><subject>Protein Processing, Post-Translational</subject><subject>Protons</subject><subject>Quinolones</subject><subject>Thiazoles</subject><subject>Topoisomerase II Inhibitors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EKtvCmQsgiwOcsvXEjj8kLssWSqUWOMDZchybepWNt3GC2v8ehw0rygFO9uj93mhmHkLPgCyBCHq660xaKsjFklWgHqAFEAUFZ4o8RAtCSlFIVrLH6DilDSFEVZIcoSMJkioGC1R_iWkYetOl1gwhdqbFV7EJPthfZcKhw1fB9tHmzzsQ-Mz50DlsOrxqmjBb1q1JCUePzz6t8Pldb5LDF911qMMQ-yfokTdtck_n9wR9-_D-6_pjcfn5_GK9uixsJflQ0EpIYmpBbANQ1xw8obS0FWNQVbRxinBovIdKWm5rKxrJlQHGa-Zq68HQE_R233c31lvXWNflvVq968PW9Hc6mqDvK1241t_jD82oBJHtr2d7H29Glwa9Dcm6tjWdi2PSgjPJKaj_gsAFEbKcwFd_gZs49vleSZcEKFFcQIZO91C-cUq984eBgegpYj1FrBVM9RRxdrz4c88DP2ea9ZezPhl_q_cavPknoP3YtoO7HTL5fE9uUg7ygJaUMy4l_QnrhMQC</recordid><startdate>19940510</startdate><enddate>19940510</enddate><creator>Yorgey, Peter</creator><creator>Lee, Jonathan</creator><creator>Kordel, Johann</creator><creator>Vivas, Eugenio</creator><creator>Warner, Philip</creator><creator>Jebaratnam, David</creator><creator>Kolter, Roberto</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19940510</creationdate><title>Posttranslational Modifications in Microcin B17 Define an Additional Class of DNA Gyrase Inhibitor</title><author>Yorgey, Peter ; Lee, Jonathan ; Kordel, Johann ; Vivas, Eugenio ; Warner, Philip ; Jebaratnam, David ; Kolter, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-35780ab70cd11bb61f0332c5441553de9061dff158c6cbc7d869a146b4ebcf1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Anti-Bacterial Agents - biosynthesis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Antibiotics</topic><topic>Bacteriocins - biosynthesis</topic><topic>Bacteriocins - chemistry</topic><topic>Bacteriocins - isolation &amp; purification</topic><topic>Biochemistry</topic><topic>Cysteine - analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Molecular Sequence Data</topic><topic>Music analysis</topic><topic>Oxazoles</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - isolation &amp; purification</topic><topic>Protein Conformation</topic><topic>Protein Processing, Post-Translational</topic><topic>Protons</topic><topic>Quinolones</topic><topic>Thiazoles</topic><topic>Topoisomerase II Inhibitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yorgey, Peter</creatorcontrib><creatorcontrib>Lee, Jonathan</creatorcontrib><creatorcontrib>Kordel, Johann</creatorcontrib><creatorcontrib>Vivas, Eugenio</creatorcontrib><creatorcontrib>Warner, Philip</creatorcontrib><creatorcontrib>Jebaratnam, David</creatorcontrib><creatorcontrib>Kolter, Roberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yorgey, Peter</au><au>Lee, Jonathan</au><au>Kordel, Johann</au><au>Vivas, Eugenio</au><au>Warner, Philip</au><au>Jebaratnam, David</au><au>Kolter, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Posttranslational Modifications in Microcin B17 Define an Additional Class of DNA Gyrase Inhibitor</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1994-05-10</date><risdate>1994</risdate><volume>91</volume><issue>10</issue><spage>4519</spage><epage>4523</epage><pages>4519-4523</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Drugs that inhibit the activity of DNA gyrase fall almost exclusively into two structural classes, the quinolones and the coumarins. A third class of DNA gyrase inhibitor is defined by the ribosomally synthesized peptide antibiotic microcin B17 (MccB17). MccB17 contains 43 amino acid residues, but 14 of these are posttranslationally modified. Here we describe the characterization of the structure of these modifications. We propose that four cysteine and four serine side chains undergo condensation with the carbonyl group of the preceding residue, followed by α/β dehydrogenation to yield four thiazole and four oxazole rings, respectively. The three proteins implicated in catalyzing these modifications (McbBCD) would constitute the only thiazole/oxazole biosynthetic enzymes identified. These results open up possibilities for the design of DNA gyrase inhibitors and add to the repertoire of posttranslational modifications with potential for protein engineering. Escherichia coli sbmA mutants, which lack the inner membrane protein (SbmA) involved in MccB17 uptake, were found to be resistant to bleomycin. Bleomycin is structurally unrelated to MccB17 except for the fact that it contains two thiazole rings. This suggests that thiazole rings are part of the MccB17 structure recognized by SbmA. This observation and the finding that SbmA homologs are widely conserved and can play developmental roles [Glazebrook, J., Ichige, A. \&amp; Walker, G. C. (1993) Genes Dev. 7, 1485-1497] suggest that thiazole- and oxazole-containing compounds may serve as signaling molecules for a wide variety of bacteria in diverse environments, including pathogen interactions with plant and animal hosts.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8183941</pmid><doi>10.1073/pnas.91.10.4519</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1994-05, Vol.91 (10), p.4519-4523
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_43817
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Amino acids
Anti-Bacterial Agents - biosynthesis
Anti-Bacterial Agents - chemistry
Antibiotics
Bacteriocins - biosynthesis
Bacteriocins - chemistry
Bacteriocins - isolation & purification
Biochemistry
Cysteine - analysis
Deoxyribonucleic acid
DNA
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Magnetic Resonance Spectroscopy
Mass Spectrometry
Mass spectroscopy
Molecular Sequence Data
Music analysis
Oxazoles
Peptide Fragments - chemistry
Peptide Fragments - isolation & purification
Protein Conformation
Protein Processing, Post-Translational
Protons
Quinolones
Thiazoles
Topoisomerase II Inhibitors
title Posttranslational Modifications in Microcin B17 Define an Additional Class of DNA Gyrase Inhibitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Posttranslational%20Modifications%20in%20Microcin%20B17%20Define%20an%20Additional%20Class%20of%20DNA%20Gyrase%20Inhibitor&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yorgey,%20Peter&rft.date=1994-05-10&rft.volume=91&rft.issue=10&rft.spage=4519&rft.epage=4523&rft.pages=4519-4523&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.91.10.4519&rft_dat=%3Cjstor_pubme%3E2364688%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201309671&rft_id=info:pmid/8183941&rft_jstor_id=2364688&rfr_iscdi=true