The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements

The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor bind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome research 2015-04, Vol.25 (4), p.582-597
Hauptverfasser: Schoenfelder, Stefan, Furlan-Magaril, Mayra, Mifsud, Borbala, Tavares-Cadete, Filipe, Sugar, Robert, Javierre, Biola-Maria, Nagano, Takashi, Katsman, Yulia, Sakthidevi, Moorthy, Wingett, Steven W, Dimitrova, Emilia, Dimond, Andrew, Edelman, Lucas B, Elderkin, Sarah, Tabbada, Kristina, Darbo, Elodie, Andrews, Simon, Herman, Bram, Higgs, Andy, LeProust, Emily, Osborne, Cameron S, Mitchell, Jennifer A, Luscombe, Nicholas M, Fraser, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 597
container_issue 4
container_start_page 582
container_title Genome research
container_volume 25
creator Schoenfelder, Stefan
Furlan-Magaril, Mayra
Mifsud, Borbala
Tavares-Cadete, Filipe
Sugar, Robert
Javierre, Biola-Maria
Nagano, Takashi
Katsman, Yulia
Sakthidevi, Moorthy
Wingett, Steven W
Dimitrova, Emilia
Dimond, Andrew
Edelman, Lucas B
Elderkin, Sarah
Tabbada, Kristina
Darbo, Elodie
Andrews, Simon
Herman, Bram
Higgs, Andy
LeProust, Emily
Osborne, Cameron S
Mitchell, Jennifer A
Luscombe, Nicholas M
Fraser, Peter
description The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression.
doi_str_mv 10.1101/gr.185272.114
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4381529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1687682342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-4abb801c9b4f7843433c1f748a62fe8550557139b8f522314f301366487bb8c93</originalsourceid><addsrcrecordid>eNqNkctLxDAQxoMorq-jV-nRSzWTR5teBBFfsOBFzyGNaTfSJjVJBf97s6wuevM0M8xvvpnhQ-gU8AUAhss-XIDgpCa5ZDvoADhrSs6qZjfnWIiywRwW6DDGN4wxZULsowXhdR5h4gC1zytTTMMc7OSTcakIpp8HlXz4LLQNerZpnXnnjE7W9cUU_JjJEIvki7QyNhSDd30ZlOtNYV1uqQ1pBjNmxXiM9jo1RHPyHY_Qy93t881DuXy6f7y5XpaaEZxKptpWYNBNy7paMMoo1dDlI1VFOiM4x5zXQJtWdJwQCqyjGGhVMVHnQd3QI3S10Z3mdjSvOu8OapBTsKMKn9IrK_92nF3J3n9IRgVwshY4_xYI_n02McnRRm2GQTnj5yihEnUlCGXkH2jVCAYNhYyWG1QHH2Mw3fYiwHJtoeyD3FiYS5b5s99vbOkfz-gXBoWZDQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669841931</pqid></control><display><type>article</type><title>The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Schoenfelder, Stefan ; Furlan-Magaril, Mayra ; Mifsud, Borbala ; Tavares-Cadete, Filipe ; Sugar, Robert ; Javierre, Biola-Maria ; Nagano, Takashi ; Katsman, Yulia ; Sakthidevi, Moorthy ; Wingett, Steven W ; Dimitrova, Emilia ; Dimond, Andrew ; Edelman, Lucas B ; Elderkin, Sarah ; Tabbada, Kristina ; Darbo, Elodie ; Andrews, Simon ; Herman, Bram ; Higgs, Andy ; LeProust, Emily ; Osborne, Cameron S ; Mitchell, Jennifer A ; Luscombe, Nicholas M ; Fraser, Peter</creator><creatorcontrib>Schoenfelder, Stefan ; Furlan-Magaril, Mayra ; Mifsud, Borbala ; Tavares-Cadete, Filipe ; Sugar, Robert ; Javierre, Biola-Maria ; Nagano, Takashi ; Katsman, Yulia ; Sakthidevi, Moorthy ; Wingett, Steven W ; Dimitrova, Emilia ; Dimond, Andrew ; Edelman, Lucas B ; Elderkin, Sarah ; Tabbada, Kristina ; Darbo, Elodie ; Andrews, Simon ; Herman, Bram ; Higgs, Andy ; LeProust, Emily ; Osborne, Cameron S ; Mitchell, Jennifer A ; Luscombe, Nicholas M ; Fraser, Peter</creatorcontrib><description>The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for &gt;22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.185272.114</identifier><identifier>PMID: 25752748</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; Binding Sites - genetics ; Chromatin - genetics ; Embryonic Stem Cells - cytology ; Enhancer Elements, Genetic - genetics ; Epigenesis, Genetic ; Gene Expression Regulation, Developmental - genetics ; Histones - genetics ; Liver - cytology ; Liver - embryology ; Mice ; Mice, Inbred C57BL ; Promoter Regions, Genetic - genetics ; Resource ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Genome research, 2015-04, Vol.25 (4), p.582-597</ispartof><rights>2015 Schoenfelder et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-4abb801c9b4f7843433c1f748a62fe8550557139b8f522314f301366487bb8c93</citedby><cites>FETCH-LOGICAL-c420t-4abb801c9b4f7843433c1f748a62fe8550557139b8f522314f301366487bb8c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381529/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381529/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25752748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schoenfelder, Stefan</creatorcontrib><creatorcontrib>Furlan-Magaril, Mayra</creatorcontrib><creatorcontrib>Mifsud, Borbala</creatorcontrib><creatorcontrib>Tavares-Cadete, Filipe</creatorcontrib><creatorcontrib>Sugar, Robert</creatorcontrib><creatorcontrib>Javierre, Biola-Maria</creatorcontrib><creatorcontrib>Nagano, Takashi</creatorcontrib><creatorcontrib>Katsman, Yulia</creatorcontrib><creatorcontrib>Sakthidevi, Moorthy</creatorcontrib><creatorcontrib>Wingett, Steven W</creatorcontrib><creatorcontrib>Dimitrova, Emilia</creatorcontrib><creatorcontrib>Dimond, Andrew</creatorcontrib><creatorcontrib>Edelman, Lucas B</creatorcontrib><creatorcontrib>Elderkin, Sarah</creatorcontrib><creatorcontrib>Tabbada, Kristina</creatorcontrib><creatorcontrib>Darbo, Elodie</creatorcontrib><creatorcontrib>Andrews, Simon</creatorcontrib><creatorcontrib>Herman, Bram</creatorcontrib><creatorcontrib>Higgs, Andy</creatorcontrib><creatorcontrib>LeProust, Emily</creatorcontrib><creatorcontrib>Osborne, Cameron S</creatorcontrib><creatorcontrib>Mitchell, Jennifer A</creatorcontrib><creatorcontrib>Luscombe, Nicholas M</creatorcontrib><creatorcontrib>Fraser, Peter</creatorcontrib><title>The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for &gt;22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression.</description><subject>Animals</subject><subject>Binding Sites - genetics</subject><subject>Chromatin - genetics</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Epigenesis, Genetic</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Histones - genetics</subject><subject>Liver - cytology</subject><subject>Liver - embryology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Resource</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctLxDAQxoMorq-jV-nRSzWTR5teBBFfsOBFzyGNaTfSJjVJBf97s6wuevM0M8xvvpnhQ-gU8AUAhss-XIDgpCa5ZDvoADhrSs6qZjfnWIiywRwW6DDGN4wxZULsowXhdR5h4gC1zytTTMMc7OSTcakIpp8HlXz4LLQNerZpnXnnjE7W9cUU_JjJEIvki7QyNhSDd30ZlOtNYV1uqQ1pBjNmxXiM9jo1RHPyHY_Qy93t881DuXy6f7y5XpaaEZxKptpWYNBNy7paMMoo1dDlI1VFOiM4x5zXQJtWdJwQCqyjGGhVMVHnQd3QI3S10Z3mdjSvOu8OapBTsKMKn9IrK_92nF3J3n9IRgVwshY4_xYI_n02McnRRm2GQTnj5yihEnUlCGXkH2jVCAYNhYyWG1QHH2Mw3fYiwHJtoeyD3FiYS5b5s99vbOkfz-gXBoWZDQ</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Schoenfelder, Stefan</creator><creator>Furlan-Magaril, Mayra</creator><creator>Mifsud, Borbala</creator><creator>Tavares-Cadete, Filipe</creator><creator>Sugar, Robert</creator><creator>Javierre, Biola-Maria</creator><creator>Nagano, Takashi</creator><creator>Katsman, Yulia</creator><creator>Sakthidevi, Moorthy</creator><creator>Wingett, Steven W</creator><creator>Dimitrova, Emilia</creator><creator>Dimond, Andrew</creator><creator>Edelman, Lucas B</creator><creator>Elderkin, Sarah</creator><creator>Tabbada, Kristina</creator><creator>Darbo, Elodie</creator><creator>Andrews, Simon</creator><creator>Herman, Bram</creator><creator>Higgs, Andy</creator><creator>LeProust, Emily</creator><creator>Osborne, Cameron S</creator><creator>Mitchell, Jennifer A</creator><creator>Luscombe, Nicholas M</creator><creator>Fraser, Peter</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201504</creationdate><title>The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements</title><author>Schoenfelder, Stefan ; Furlan-Magaril, Mayra ; Mifsud, Borbala ; Tavares-Cadete, Filipe ; Sugar, Robert ; Javierre, Biola-Maria ; Nagano, Takashi ; Katsman, Yulia ; Sakthidevi, Moorthy ; Wingett, Steven W ; Dimitrova, Emilia ; Dimond, Andrew ; Edelman, Lucas B ; Elderkin, Sarah ; Tabbada, Kristina ; Darbo, Elodie ; Andrews, Simon ; Herman, Bram ; Higgs, Andy ; LeProust, Emily ; Osborne, Cameron S ; Mitchell, Jennifer A ; Luscombe, Nicholas M ; Fraser, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-4abb801c9b4f7843433c1f748a62fe8550557139b8f522314f301366487bb8c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Binding Sites - genetics</topic><topic>Chromatin - genetics</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Epigenesis, Genetic</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Histones - genetics</topic><topic>Liver - cytology</topic><topic>Liver - embryology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Resource</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schoenfelder, Stefan</creatorcontrib><creatorcontrib>Furlan-Magaril, Mayra</creatorcontrib><creatorcontrib>Mifsud, Borbala</creatorcontrib><creatorcontrib>Tavares-Cadete, Filipe</creatorcontrib><creatorcontrib>Sugar, Robert</creatorcontrib><creatorcontrib>Javierre, Biola-Maria</creatorcontrib><creatorcontrib>Nagano, Takashi</creatorcontrib><creatorcontrib>Katsman, Yulia</creatorcontrib><creatorcontrib>Sakthidevi, Moorthy</creatorcontrib><creatorcontrib>Wingett, Steven W</creatorcontrib><creatorcontrib>Dimitrova, Emilia</creatorcontrib><creatorcontrib>Dimond, Andrew</creatorcontrib><creatorcontrib>Edelman, Lucas B</creatorcontrib><creatorcontrib>Elderkin, Sarah</creatorcontrib><creatorcontrib>Tabbada, Kristina</creatorcontrib><creatorcontrib>Darbo, Elodie</creatorcontrib><creatorcontrib>Andrews, Simon</creatorcontrib><creatorcontrib>Herman, Bram</creatorcontrib><creatorcontrib>Higgs, Andy</creatorcontrib><creatorcontrib>LeProust, Emily</creatorcontrib><creatorcontrib>Osborne, Cameron S</creatorcontrib><creatorcontrib>Mitchell, Jennifer A</creatorcontrib><creatorcontrib>Luscombe, Nicholas M</creatorcontrib><creatorcontrib>Fraser, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schoenfelder, Stefan</au><au>Furlan-Magaril, Mayra</au><au>Mifsud, Borbala</au><au>Tavares-Cadete, Filipe</au><au>Sugar, Robert</au><au>Javierre, Biola-Maria</au><au>Nagano, Takashi</au><au>Katsman, Yulia</au><au>Sakthidevi, Moorthy</au><au>Wingett, Steven W</au><au>Dimitrova, Emilia</au><au>Dimond, Andrew</au><au>Edelman, Lucas B</au><au>Elderkin, Sarah</au><au>Tabbada, Kristina</au><au>Darbo, Elodie</au><au>Andrews, Simon</au><au>Herman, Bram</au><au>Higgs, Andy</au><au>LeProust, Emily</au><au>Osborne, Cameron S</au><au>Mitchell, Jennifer A</au><au>Luscombe, Nicholas M</au><au>Fraser, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2015-04</date><risdate>2015</risdate><volume>25</volume><issue>4</issue><spage>582</spage><epage>597</epage><pages>582-597</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for &gt;22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>25752748</pmid><doi>10.1101/gr.185272.114</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-9051
ispartof Genome research, 2015-04, Vol.25 (4), p.582-597
issn 1088-9051
1549-5469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4381529
source MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Animals
Binding Sites - genetics
Chromatin - genetics
Embryonic Stem Cells - cytology
Enhancer Elements, Genetic - genetics
Epigenesis, Genetic
Gene Expression Regulation, Developmental - genetics
Histones - genetics
Liver - cytology
Liver - embryology
Mice
Mice, Inbred C57BL
Promoter Regions, Genetic - genetics
Resource
Transcription Factors - genetics
Transcription Factors - metabolism
title The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20pluripotent%20regulatory%20circuitry%20connecting%20promoters%20to%20their%20long-range%20interacting%20elements&rft.jtitle=Genome%20research&rft.au=Schoenfelder,%20Stefan&rft.date=2015-04&rft.volume=25&rft.issue=4&rft.spage=582&rft.epage=597&rft.pages=582-597&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.185272.114&rft_dat=%3Cproquest_pubme%3E1687682342%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669841931&rft_id=info:pmid/25752748&rfr_iscdi=true