The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements
The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor bind...
Gespeichert in:
Veröffentlicht in: | Genome research 2015-04, Vol.25 (4), p.582-597 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 597 |
---|---|
container_issue | 4 |
container_start_page | 582 |
container_title | Genome research |
container_volume | 25 |
creator | Schoenfelder, Stefan Furlan-Magaril, Mayra Mifsud, Borbala Tavares-Cadete, Filipe Sugar, Robert Javierre, Biola-Maria Nagano, Takashi Katsman, Yulia Sakthidevi, Moorthy Wingett, Steven W Dimitrova, Emilia Dimond, Andrew Edelman, Lucas B Elderkin, Sarah Tabbada, Kristina Darbo, Elodie Andrews, Simon Herman, Bram Higgs, Andy LeProust, Emily Osborne, Cameron S Mitchell, Jennifer A Luscombe, Nicholas M Fraser, Peter |
description | The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression. |
doi_str_mv | 10.1101/gr.185272.114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4381529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1687682342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-4abb801c9b4f7843433c1f748a62fe8550557139b8f522314f301366487bb8c93</originalsourceid><addsrcrecordid>eNqNkctLxDAQxoMorq-jV-nRSzWTR5teBBFfsOBFzyGNaTfSJjVJBf97s6wuevM0M8xvvpnhQ-gU8AUAhss-XIDgpCa5ZDvoADhrSs6qZjfnWIiywRwW6DDGN4wxZULsowXhdR5h4gC1zytTTMMc7OSTcakIpp8HlXz4LLQNerZpnXnnjE7W9cUU_JjJEIvki7QyNhSDd30ZlOtNYV1uqQ1pBjNmxXiM9jo1RHPyHY_Qy93t881DuXy6f7y5XpaaEZxKptpWYNBNy7paMMoo1dDlI1VFOiM4x5zXQJtWdJwQCqyjGGhVMVHnQd3QI3S10Z3mdjSvOu8OapBTsKMKn9IrK_92nF3J3n9IRgVwshY4_xYI_n02McnRRm2GQTnj5yihEnUlCGXkH2jVCAYNhYyWG1QHH2Mw3fYiwHJtoeyD3FiYS5b5s99vbOkfz-gXBoWZDQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669841931</pqid></control><display><type>article</type><title>The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Schoenfelder, Stefan ; Furlan-Magaril, Mayra ; Mifsud, Borbala ; Tavares-Cadete, Filipe ; Sugar, Robert ; Javierre, Biola-Maria ; Nagano, Takashi ; Katsman, Yulia ; Sakthidevi, Moorthy ; Wingett, Steven W ; Dimitrova, Emilia ; Dimond, Andrew ; Edelman, Lucas B ; Elderkin, Sarah ; Tabbada, Kristina ; Darbo, Elodie ; Andrews, Simon ; Herman, Bram ; Higgs, Andy ; LeProust, Emily ; Osborne, Cameron S ; Mitchell, Jennifer A ; Luscombe, Nicholas M ; Fraser, Peter</creator><creatorcontrib>Schoenfelder, Stefan ; Furlan-Magaril, Mayra ; Mifsud, Borbala ; Tavares-Cadete, Filipe ; Sugar, Robert ; Javierre, Biola-Maria ; Nagano, Takashi ; Katsman, Yulia ; Sakthidevi, Moorthy ; Wingett, Steven W ; Dimitrova, Emilia ; Dimond, Andrew ; Edelman, Lucas B ; Elderkin, Sarah ; Tabbada, Kristina ; Darbo, Elodie ; Andrews, Simon ; Herman, Bram ; Higgs, Andy ; LeProust, Emily ; Osborne, Cameron S ; Mitchell, Jennifer A ; Luscombe, Nicholas M ; Fraser, Peter</creatorcontrib><description>The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.185272.114</identifier><identifier>PMID: 25752748</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; Binding Sites - genetics ; Chromatin - genetics ; Embryonic Stem Cells - cytology ; Enhancer Elements, Genetic - genetics ; Epigenesis, Genetic ; Gene Expression Regulation, Developmental - genetics ; Histones - genetics ; Liver - cytology ; Liver - embryology ; Mice ; Mice, Inbred C57BL ; Promoter Regions, Genetic - genetics ; Resource ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Genome research, 2015-04, Vol.25 (4), p.582-597</ispartof><rights>2015 Schoenfelder et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-4abb801c9b4f7843433c1f748a62fe8550557139b8f522314f301366487bb8c93</citedby><cites>FETCH-LOGICAL-c420t-4abb801c9b4f7843433c1f748a62fe8550557139b8f522314f301366487bb8c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381529/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381529/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25752748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schoenfelder, Stefan</creatorcontrib><creatorcontrib>Furlan-Magaril, Mayra</creatorcontrib><creatorcontrib>Mifsud, Borbala</creatorcontrib><creatorcontrib>Tavares-Cadete, Filipe</creatorcontrib><creatorcontrib>Sugar, Robert</creatorcontrib><creatorcontrib>Javierre, Biola-Maria</creatorcontrib><creatorcontrib>Nagano, Takashi</creatorcontrib><creatorcontrib>Katsman, Yulia</creatorcontrib><creatorcontrib>Sakthidevi, Moorthy</creatorcontrib><creatorcontrib>Wingett, Steven W</creatorcontrib><creatorcontrib>Dimitrova, Emilia</creatorcontrib><creatorcontrib>Dimond, Andrew</creatorcontrib><creatorcontrib>Edelman, Lucas B</creatorcontrib><creatorcontrib>Elderkin, Sarah</creatorcontrib><creatorcontrib>Tabbada, Kristina</creatorcontrib><creatorcontrib>Darbo, Elodie</creatorcontrib><creatorcontrib>Andrews, Simon</creatorcontrib><creatorcontrib>Herman, Bram</creatorcontrib><creatorcontrib>Higgs, Andy</creatorcontrib><creatorcontrib>LeProust, Emily</creatorcontrib><creatorcontrib>Osborne, Cameron S</creatorcontrib><creatorcontrib>Mitchell, Jennifer A</creatorcontrib><creatorcontrib>Luscombe, Nicholas M</creatorcontrib><creatorcontrib>Fraser, Peter</creatorcontrib><title>The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression.</description><subject>Animals</subject><subject>Binding Sites - genetics</subject><subject>Chromatin - genetics</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Epigenesis, Genetic</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Histones - genetics</subject><subject>Liver - cytology</subject><subject>Liver - embryology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Resource</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctLxDAQxoMorq-jV-nRSzWTR5teBBFfsOBFzyGNaTfSJjVJBf97s6wuevM0M8xvvpnhQ-gU8AUAhss-XIDgpCa5ZDvoADhrSs6qZjfnWIiywRwW6DDGN4wxZULsowXhdR5h4gC1zytTTMMc7OSTcakIpp8HlXz4LLQNerZpnXnnjE7W9cUU_JjJEIvki7QyNhSDd30ZlOtNYV1uqQ1pBjNmxXiM9jo1RHPyHY_Qy93t881DuXy6f7y5XpaaEZxKptpWYNBNy7paMMoo1dDlI1VFOiM4x5zXQJtWdJwQCqyjGGhVMVHnQd3QI3S10Z3mdjSvOu8OapBTsKMKn9IrK_92nF3J3n9IRgVwshY4_xYI_n02McnRRm2GQTnj5yihEnUlCGXkH2jVCAYNhYyWG1QHH2Mw3fYiwHJtoeyD3FiYS5b5s99vbOkfz-gXBoWZDQ</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Schoenfelder, Stefan</creator><creator>Furlan-Magaril, Mayra</creator><creator>Mifsud, Borbala</creator><creator>Tavares-Cadete, Filipe</creator><creator>Sugar, Robert</creator><creator>Javierre, Biola-Maria</creator><creator>Nagano, Takashi</creator><creator>Katsman, Yulia</creator><creator>Sakthidevi, Moorthy</creator><creator>Wingett, Steven W</creator><creator>Dimitrova, Emilia</creator><creator>Dimond, Andrew</creator><creator>Edelman, Lucas B</creator><creator>Elderkin, Sarah</creator><creator>Tabbada, Kristina</creator><creator>Darbo, Elodie</creator><creator>Andrews, Simon</creator><creator>Herman, Bram</creator><creator>Higgs, Andy</creator><creator>LeProust, Emily</creator><creator>Osborne, Cameron S</creator><creator>Mitchell, Jennifer A</creator><creator>Luscombe, Nicholas M</creator><creator>Fraser, Peter</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201504</creationdate><title>The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements</title><author>Schoenfelder, Stefan ; Furlan-Magaril, Mayra ; Mifsud, Borbala ; Tavares-Cadete, Filipe ; Sugar, Robert ; Javierre, Biola-Maria ; Nagano, Takashi ; Katsman, Yulia ; Sakthidevi, Moorthy ; Wingett, Steven W ; Dimitrova, Emilia ; Dimond, Andrew ; Edelman, Lucas B ; Elderkin, Sarah ; Tabbada, Kristina ; Darbo, Elodie ; Andrews, Simon ; Herman, Bram ; Higgs, Andy ; LeProust, Emily ; Osborne, Cameron S ; Mitchell, Jennifer A ; Luscombe, Nicholas M ; Fraser, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-4abb801c9b4f7843433c1f748a62fe8550557139b8f522314f301366487bb8c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Binding Sites - genetics</topic><topic>Chromatin - genetics</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Epigenesis, Genetic</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Histones - genetics</topic><topic>Liver - cytology</topic><topic>Liver - embryology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Resource</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schoenfelder, Stefan</creatorcontrib><creatorcontrib>Furlan-Magaril, Mayra</creatorcontrib><creatorcontrib>Mifsud, Borbala</creatorcontrib><creatorcontrib>Tavares-Cadete, Filipe</creatorcontrib><creatorcontrib>Sugar, Robert</creatorcontrib><creatorcontrib>Javierre, Biola-Maria</creatorcontrib><creatorcontrib>Nagano, Takashi</creatorcontrib><creatorcontrib>Katsman, Yulia</creatorcontrib><creatorcontrib>Sakthidevi, Moorthy</creatorcontrib><creatorcontrib>Wingett, Steven W</creatorcontrib><creatorcontrib>Dimitrova, Emilia</creatorcontrib><creatorcontrib>Dimond, Andrew</creatorcontrib><creatorcontrib>Edelman, Lucas B</creatorcontrib><creatorcontrib>Elderkin, Sarah</creatorcontrib><creatorcontrib>Tabbada, Kristina</creatorcontrib><creatorcontrib>Darbo, Elodie</creatorcontrib><creatorcontrib>Andrews, Simon</creatorcontrib><creatorcontrib>Herman, Bram</creatorcontrib><creatorcontrib>Higgs, Andy</creatorcontrib><creatorcontrib>LeProust, Emily</creatorcontrib><creatorcontrib>Osborne, Cameron S</creatorcontrib><creatorcontrib>Mitchell, Jennifer A</creatorcontrib><creatorcontrib>Luscombe, Nicholas M</creatorcontrib><creatorcontrib>Fraser, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schoenfelder, Stefan</au><au>Furlan-Magaril, Mayra</au><au>Mifsud, Borbala</au><au>Tavares-Cadete, Filipe</au><au>Sugar, Robert</au><au>Javierre, Biola-Maria</au><au>Nagano, Takashi</au><au>Katsman, Yulia</au><au>Sakthidevi, Moorthy</au><au>Wingett, Steven W</au><au>Dimitrova, Emilia</au><au>Dimond, Andrew</au><au>Edelman, Lucas B</au><au>Elderkin, Sarah</au><au>Tabbada, Kristina</au><au>Darbo, Elodie</au><au>Andrews, Simon</au><au>Herman, Bram</au><au>Higgs, Andy</au><au>LeProust, Emily</au><au>Osborne, Cameron S</au><au>Mitchell, Jennifer A</au><au>Luscombe, Nicholas M</au><au>Fraser, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2015-04</date><risdate>2015</risdate><volume>25</volume><issue>4</issue><spage>582</spage><epage>597</epage><pages>582-597</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>25752748</pmid><doi>10.1101/gr.185272.114</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-9051 |
ispartof | Genome research, 2015-04, Vol.25 (4), p.582-597 |
issn | 1088-9051 1549-5469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4381529 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Binding Sites - genetics Chromatin - genetics Embryonic Stem Cells - cytology Enhancer Elements, Genetic - genetics Epigenesis, Genetic Gene Expression Regulation, Developmental - genetics Histones - genetics Liver - cytology Liver - embryology Mice Mice, Inbred C57BL Promoter Regions, Genetic - genetics Resource Transcription Factors - genetics Transcription Factors - metabolism |
title | The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20pluripotent%20regulatory%20circuitry%20connecting%20promoters%20to%20their%20long-range%20interacting%20elements&rft.jtitle=Genome%20research&rft.au=Schoenfelder,%20Stefan&rft.date=2015-04&rft.volume=25&rft.issue=4&rft.spage=582&rft.epage=597&rft.pages=582-597&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.185272.114&rft_dat=%3Cproquest_pubme%3E1687682342%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669841931&rft_id=info:pmid/25752748&rfr_iscdi=true |