Accurate, multi-kb reads resolve complex populations and detect rare microorganisms
Accurate evaluation of microbial communities is essential for understanding global biogeochemical processes and can guide bioremediation and medical treatments. Metagenomics is most commonly used to analyze microbial diversity and metabolic potential, but assemblies of the short reads generated by c...
Gespeichert in:
Veröffentlicht in: | Genome research 2015-04, Vol.25 (4), p.534-543 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 543 |
---|---|
container_issue | 4 |
container_start_page | 534 |
container_title | Genome research |
container_volume | 25 |
creator | Sharon, Itai Kertesz, Michael Hug, Laura A Pushkarev, Dmitry Blauwkamp, Timothy A Castelle, Cindy J Amirebrahimi, Mojgan Thomas, Brian C Burstein, David Tringe, Susannah G Williams, Kenneth H Banfield, Jillian F |
description | Accurate evaluation of microbial communities is essential for understanding global biogeochemical processes and can guide bioremediation and medical treatments. Metagenomics is most commonly used to analyze microbial diversity and metabolic potential, but assemblies of the short reads generated by current sequencing platforms may fail to recover heterogeneous strain populations and rare organisms. Here we used short (150-bp) and long (multi-kb) synthetic reads to evaluate strain heterogeneity and study microorganisms at low abundance in complex microbial communities from terrestrial sediments. The long-read data revealed multiple (probably dozens of) closely related species and strains from previously undescribed Deltaproteobacteria and Aminicenantes (candidate phylum OP8). Notably, these are the most abundant organisms in the communities, yet short-read assemblies achieved only partial genome coverage, mostly in the form of short scaffolds (N50 = ∼ 2200 bp). Genome architecture and metabolic potential for these lineages were reconstructed using a new synteny-based method. Analysis of long-read data also revealed thousands of species whose abundances were |
doi_str_mv | 10.1101/gr.183012.114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4381525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1687681521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-83c955b59c104dcf8c7ec1d50bf74fcd787f8115ce49482dbecd599ec81073a63</originalsourceid><addsrcrecordid>eNqNkUtv1TAQhSNERUthyRZFrFiQ4kns2N4gVRUvqVIXhbXljCe3hiQOtlOVf19f3VLBjo3Ho_l0xsenql4BOwNg8H4Xz0B1DNrS8ifVCQiuG8F7_bTcmVKNZgKOq-cp_WCMdVypZ9VxK_peCClPqutzxC3aTO_qeZuyb34OdSTrUjlTmG6pxjCvE93Va1i3yWYfllTbxdWOMmGuo41Uzx5jCHFnF5_m9KI6Gu2U6OVDPa2-f_r47eJLc3n1-evF-WWDArrcqA61EIPQCIw7HBVKQnCCDaPkIzqp5KgABBLXXLVuIHRCa0IFTHa2706rDwfddRtmckhLjnYya_Szjb9NsN78O1n8jdmFW8M7BaIVReDNQSCk7E1CXxzdYFiWYsyAgBZAFujtw5YYfm2Uspl9Qpomu1DYkoFeyX6vB_-B9lpx0Gyv2hzQ8nEpRRofnw3M7IM1u2gOwZaWF_71314f6T9Jdvczhp-z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669841907</pqid></control><display><type>article</type><title>Accurate, multi-kb reads resolve complex populations and detect rare microorganisms</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sharon, Itai ; Kertesz, Michael ; Hug, Laura A ; Pushkarev, Dmitry ; Blauwkamp, Timothy A ; Castelle, Cindy J ; Amirebrahimi, Mojgan ; Thomas, Brian C ; Burstein, David ; Tringe, Susannah G ; Williams, Kenneth H ; Banfield, Jillian F</creator><creatorcontrib>Sharon, Itai ; Kertesz, Michael ; Hug, Laura A ; Pushkarev, Dmitry ; Blauwkamp, Timothy A ; Castelle, Cindy J ; Amirebrahimi, Mojgan ; Thomas, Brian C ; Burstein, David ; Tringe, Susannah G ; Williams, Kenneth H ; Banfield, Jillian F ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Accurate evaluation of microbial communities is essential for understanding global biogeochemical processes and can guide bioremediation and medical treatments. Metagenomics is most commonly used to analyze microbial diversity and metabolic potential, but assemblies of the short reads generated by current sequencing platforms may fail to recover heterogeneous strain populations and rare organisms. Here we used short (150-bp) and long (multi-kb) synthetic reads to evaluate strain heterogeneity and study microorganisms at low abundance in complex microbial communities from terrestrial sediments. The long-read data revealed multiple (probably dozens of) closely related species and strains from previously undescribed Deltaproteobacteria and Aminicenantes (candidate phylum OP8). Notably, these are the most abundant organisms in the communities, yet short-read assemblies achieved only partial genome coverage, mostly in the form of short scaffolds (N50 = ∼ 2200 bp). Genome architecture and metabolic potential for these lineages were reconstructed using a new synteny-based method. Analysis of long-read data also revealed thousands of species whose abundances were <0.1% in all samples. Most of the organisms in this "long tail" of rare organisms belong to phyla that are also represented by abundant organisms. Genes encoding glycosyl hydrolases are significantly more abundant than expected in rare genomes, suggesting that rare species may augment the capability for carbon turnover and confer resilience to changing environmental conditions. Overall, the study showed that a diversity of closely related strains and rare organisms account for a major portion of the communities. These are probably common features of many microbial communities and can be effectively studied using a combination of long and short reads.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.183012.114</identifier><identifier>PMID: 25665577</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Bacterial Proteins - genetics ; Base Sequence ; BASIC BIOLOGICAL SCIENCES ; Biodiversity ; Chloroflexi - genetics ; Chloroflexi - isolation & purification ; Deltaproteobacteria - genetics ; Deltaproteobacteria - isolation & purification ; DNA, Bacterial - genetics ; Genome, Bacterial ; Geologic Sediments - analysis ; Geologic Sediments - microbiology ; Glucose - metabolism ; Hydrolases - genetics ; Metagenomics - methods ; Microbial Consortia - genetics ; Sequence Analysis, DNA</subject><ispartof>Genome research, 2015-04, Vol.25 (4), p.534-543</ispartof><rights>2015 Sharon et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-83c955b59c104dcf8c7ec1d50bf74fcd787f8115ce49482dbecd599ec81073a63</citedby><cites>FETCH-LOGICAL-c513t-83c955b59c104dcf8c7ec1d50bf74fcd787f8115ce49482dbecd599ec81073a63</cites><orcidid>0000-0003-0705-2316 ; 0000000307052316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381525/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381525/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25665577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1512117$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharon, Itai</creatorcontrib><creatorcontrib>Kertesz, Michael</creatorcontrib><creatorcontrib>Hug, Laura A</creatorcontrib><creatorcontrib>Pushkarev, Dmitry</creatorcontrib><creatorcontrib>Blauwkamp, Timothy A</creatorcontrib><creatorcontrib>Castelle, Cindy J</creatorcontrib><creatorcontrib>Amirebrahimi, Mojgan</creatorcontrib><creatorcontrib>Thomas, Brian C</creatorcontrib><creatorcontrib>Burstein, David</creatorcontrib><creatorcontrib>Tringe, Susannah G</creatorcontrib><creatorcontrib>Williams, Kenneth H</creatorcontrib><creatorcontrib>Banfield, Jillian F</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Accurate, multi-kb reads resolve complex populations and detect rare microorganisms</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>Accurate evaluation of microbial communities is essential for understanding global biogeochemical processes and can guide bioremediation and medical treatments. Metagenomics is most commonly used to analyze microbial diversity and metabolic potential, but assemblies of the short reads generated by current sequencing platforms may fail to recover heterogeneous strain populations and rare organisms. Here we used short (150-bp) and long (multi-kb) synthetic reads to evaluate strain heterogeneity and study microorganisms at low abundance in complex microbial communities from terrestrial sediments. The long-read data revealed multiple (probably dozens of) closely related species and strains from previously undescribed Deltaproteobacteria and Aminicenantes (candidate phylum OP8). Notably, these are the most abundant organisms in the communities, yet short-read assemblies achieved only partial genome coverage, mostly in the form of short scaffolds (N50 = ∼ 2200 bp). Genome architecture and metabolic potential for these lineages were reconstructed using a new synteny-based method. Analysis of long-read data also revealed thousands of species whose abundances were <0.1% in all samples. Most of the organisms in this "long tail" of rare organisms belong to phyla that are also represented by abundant organisms. Genes encoding glycosyl hydrolases are significantly more abundant than expected in rare genomes, suggesting that rare species may augment the capability for carbon turnover and confer resilience to changing environmental conditions. Overall, the study showed that a diversity of closely related strains and rare organisms account for a major portion of the communities. These are probably common features of many microbial communities and can be effectively studied using a combination of long and short reads.</description><subject>Bacterial Proteins - genetics</subject><subject>Base Sequence</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biodiversity</subject><subject>Chloroflexi - genetics</subject><subject>Chloroflexi - isolation & purification</subject><subject>Deltaproteobacteria - genetics</subject><subject>Deltaproteobacteria - isolation & purification</subject><subject>DNA, Bacterial - genetics</subject><subject>Genome, Bacterial</subject><subject>Geologic Sediments - analysis</subject><subject>Geologic Sediments - microbiology</subject><subject>Glucose - metabolism</subject><subject>Hydrolases - genetics</subject><subject>Metagenomics - methods</subject><subject>Microbial Consortia - genetics</subject><subject>Sequence Analysis, DNA</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1TAQhSNERUthyRZFrFiQ4kns2N4gVRUvqVIXhbXljCe3hiQOtlOVf19f3VLBjo3Ho_l0xsenql4BOwNg8H4Xz0B1DNrS8ifVCQiuG8F7_bTcmVKNZgKOq-cp_WCMdVypZ9VxK_peCClPqutzxC3aTO_qeZuyb34OdSTrUjlTmG6pxjCvE93Va1i3yWYfllTbxdWOMmGuo41Uzx5jCHFnF5_m9KI6Gu2U6OVDPa2-f_r47eJLc3n1-evF-WWDArrcqA61EIPQCIw7HBVKQnCCDaPkIzqp5KgABBLXXLVuIHRCa0IFTHa2706rDwfddRtmckhLjnYya_Szjb9NsN78O1n8jdmFW8M7BaIVReDNQSCk7E1CXxzdYFiWYsyAgBZAFujtw5YYfm2Uspl9Qpomu1DYkoFeyX6vB_-B9lpx0Gyv2hzQ8nEpRRofnw3M7IM1u2gOwZaWF_71314f6T9Jdvczhp-z</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Sharon, Itai</creator><creator>Kertesz, Michael</creator><creator>Hug, Laura A</creator><creator>Pushkarev, Dmitry</creator><creator>Blauwkamp, Timothy A</creator><creator>Castelle, Cindy J</creator><creator>Amirebrahimi, Mojgan</creator><creator>Thomas, Brian C</creator><creator>Burstein, David</creator><creator>Tringe, Susannah G</creator><creator>Williams, Kenneth H</creator><creator>Banfield, Jillian F</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0705-2316</orcidid><orcidid>https://orcid.org/0000000307052316</orcidid></search><sort><creationdate>20150401</creationdate><title>Accurate, multi-kb reads resolve complex populations and detect rare microorganisms</title><author>Sharon, Itai ; Kertesz, Michael ; Hug, Laura A ; Pushkarev, Dmitry ; Blauwkamp, Timothy A ; Castelle, Cindy J ; Amirebrahimi, Mojgan ; Thomas, Brian C ; Burstein, David ; Tringe, Susannah G ; Williams, Kenneth H ; Banfield, Jillian F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-83c955b59c104dcf8c7ec1d50bf74fcd787f8115ce49482dbecd599ec81073a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Base Sequence</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biodiversity</topic><topic>Chloroflexi - genetics</topic><topic>Chloroflexi - isolation & purification</topic><topic>Deltaproteobacteria - genetics</topic><topic>Deltaproteobacteria - isolation & purification</topic><topic>DNA, Bacterial - genetics</topic><topic>Genome, Bacterial</topic><topic>Geologic Sediments - analysis</topic><topic>Geologic Sediments - microbiology</topic><topic>Glucose - metabolism</topic><topic>Hydrolases - genetics</topic><topic>Metagenomics - methods</topic><topic>Microbial Consortia - genetics</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharon, Itai</creatorcontrib><creatorcontrib>Kertesz, Michael</creatorcontrib><creatorcontrib>Hug, Laura A</creatorcontrib><creatorcontrib>Pushkarev, Dmitry</creatorcontrib><creatorcontrib>Blauwkamp, Timothy A</creatorcontrib><creatorcontrib>Castelle, Cindy J</creatorcontrib><creatorcontrib>Amirebrahimi, Mojgan</creatorcontrib><creatorcontrib>Thomas, Brian C</creatorcontrib><creatorcontrib>Burstein, David</creatorcontrib><creatorcontrib>Tringe, Susannah G</creatorcontrib><creatorcontrib>Williams, Kenneth H</creatorcontrib><creatorcontrib>Banfield, Jillian F</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharon, Itai</au><au>Kertesz, Michael</au><au>Hug, Laura A</au><au>Pushkarev, Dmitry</au><au>Blauwkamp, Timothy A</au><au>Castelle, Cindy J</au><au>Amirebrahimi, Mojgan</au><au>Thomas, Brian C</au><au>Burstein, David</au><au>Tringe, Susannah G</au><au>Williams, Kenneth H</au><au>Banfield, Jillian F</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate, multi-kb reads resolve complex populations and detect rare microorganisms</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>25</volume><issue>4</issue><spage>534</spage><epage>543</epage><pages>534-543</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>Accurate evaluation of microbial communities is essential for understanding global biogeochemical processes and can guide bioremediation and medical treatments. Metagenomics is most commonly used to analyze microbial diversity and metabolic potential, but assemblies of the short reads generated by current sequencing platforms may fail to recover heterogeneous strain populations and rare organisms. Here we used short (150-bp) and long (multi-kb) synthetic reads to evaluate strain heterogeneity and study microorganisms at low abundance in complex microbial communities from terrestrial sediments. The long-read data revealed multiple (probably dozens of) closely related species and strains from previously undescribed Deltaproteobacteria and Aminicenantes (candidate phylum OP8). Notably, these are the most abundant organisms in the communities, yet short-read assemblies achieved only partial genome coverage, mostly in the form of short scaffolds (N50 = ∼ 2200 bp). Genome architecture and metabolic potential for these lineages were reconstructed using a new synteny-based method. Analysis of long-read data also revealed thousands of species whose abundances were <0.1% in all samples. Most of the organisms in this "long tail" of rare organisms belong to phyla that are also represented by abundant organisms. Genes encoding glycosyl hydrolases are significantly more abundant than expected in rare genomes, suggesting that rare species may augment the capability for carbon turnover and confer resilience to changing environmental conditions. Overall, the study showed that a diversity of closely related strains and rare organisms account for a major portion of the communities. These are probably common features of many microbial communities and can be effectively studied using a combination of long and short reads.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>25665577</pmid><doi>10.1101/gr.183012.114</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0705-2316</orcidid><orcidid>https://orcid.org/0000000307052316</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-9051 |
ispartof | Genome research, 2015-04, Vol.25 (4), p.534-543 |
issn | 1088-9051 1549-5469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4381525 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Bacterial Proteins - genetics Base Sequence BASIC BIOLOGICAL SCIENCES Biodiversity Chloroflexi - genetics Chloroflexi - isolation & purification Deltaproteobacteria - genetics Deltaproteobacteria - isolation & purification DNA, Bacterial - genetics Genome, Bacterial Geologic Sediments - analysis Geologic Sediments - microbiology Glucose - metabolism Hydrolases - genetics Metagenomics - methods Microbial Consortia - genetics Sequence Analysis, DNA |
title | Accurate, multi-kb reads resolve complex populations and detect rare microorganisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate,%20multi-kb%20reads%20resolve%20complex%20populations%20and%20detect%20rare%20microorganisms&rft.jtitle=Genome%20research&rft.au=Sharon,%20Itai&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2015-04-01&rft.volume=25&rft.issue=4&rft.spage=534&rft.epage=543&rft.pages=534-543&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.183012.114&rft_dat=%3Cproquest_pubme%3E1687681521%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669841907&rft_id=info:pmid/25665577&rfr_iscdi=true |