Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase

Conformational changes in the β2α2 and β6α6 loops in the alpha subunit of tryptophan synthase (αTS) are important for enzyme catalysis and coordinating substrate channeling with the beta subunit (βTS). It was previously shown that disrupting the hydrogen bond interactions between these loops through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2015-04, Vol.24 (4), p.484-494
Hauptverfasser: Axe, Jennifer M., O'Rourke, Kathleen F., Kerstetter, Nicole E., Yezdimer, Eric M., Chan, Yan M., Chasin, Alexander, Boehr, David D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 494
container_issue 4
container_start_page 484
container_title Protein science
container_volume 24
creator Axe, Jennifer M.
O'Rourke, Kathleen F.
Kerstetter, Nicole E.
Yezdimer, Eric M.
Chan, Yan M.
Chasin, Alexander
Boehr, David D.
description Conformational changes in the β2α2 and β6α6 loops in the alpha subunit of tryptophan synthase (αTS) are important for enzyme catalysis and coordinating substrate channeling with the beta subunit (βTS). It was previously shown that disrupting the hydrogen bond interactions between these loops through the T183V substitution on the β6α6 loop decreases catalytic efficiency and impairs substrate channeling. Results presented here also indicate that the T183V substitution decreases catalytic efficiency in Escherchia coli αTS in the absence of the βTS subunit. Nuclear magnetic resonance (NMR) experiments indicate that the T183V substitution leads to local changes in the structural dynamics of the β2α2 and β6α6 loops. We have also used NMR chemical shift covariance analyses (CHESCA) to map amino acid networks in the presence and absence of the T183V substitution. Under conditions of active catalytic turnover, the T183V substitution disrupts long‐range networks connecting the catalytic residue Glu49 to the αTS‐βTS binding interface, which might be important in the coordination of catalytic activities in the tryptophan synthase complex. The approach that we have developed here will likely find general utility in understanding long‐range impacts on protein structure and dynamics of amino acid substitutions generated through protein engineering and directed evolution approaches, and provide insight into disease and drug‐resistance mutations.
doi_str_mv 10.1002/pro.2598
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4380980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1667351681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4388-2de368422ff874f296caaccae93c01c83314327ef931eade6ccd1fb4b29fa2053</originalsourceid><addsrcrecordid>eNp1kdtqFTEUhoModlsFn0AC3ngzNYeZTHIjSKkHKFQ8gHchk1mzd-rsZEwyu8wL-Nxm2loP4NUiKx_fWosfoaeUnFBC2MsphhPWKHkPbWgtVCWV-HofbYgStJJcyCP0KKVLQkhNGX-IjljD21bVaoN-fIIDROe3OAzY4N3Sx7AFj7vge9y7FOcpJ2z2zgdsrOuxh3wV4reEncd5B9iabMYlO2vGcSlIdgfAKZsMq3ElzDjtDE5zN3uXr5txmXIoTY_T4vPOJHiMHgxmTPDkth6jL2_OPp--q84v3r4_fX1e2ZpLWbEeyjU1Y8Mg23pgSlhjrDWguCXUSs5pzVkLg-IUTA_C2p4OXd0xNRhGGn6MXt14p7nbQ2_B52hGPUW3N3HRwTj99493O70NB13GEyVJEby4FcTwfYaU9d4lC-NoPIQ5aSpEyxsqJC3o83_QyzBHX85bqaZhomHtb6GNIaUIw90ylOg13PIOeg23oM_-XP4O_JVmAaob4MqNsPxXpD98vLgW_gQZ6rJE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1665526527</pqid></control><display><type>article</type><title>Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Axe, Jennifer M. ; O'Rourke, Kathleen F. ; Kerstetter, Nicole E. ; Yezdimer, Eric M. ; Chan, Yan M. ; Chasin, Alexander ; Boehr, David D.</creator><creatorcontrib>Axe, Jennifer M. ; O'Rourke, Kathleen F. ; Kerstetter, Nicole E. ; Yezdimer, Eric M. ; Chan, Yan M. ; Chasin, Alexander ; Boehr, David D.</creatorcontrib><description>Conformational changes in the β2α2 and β6α6 loops in the alpha subunit of tryptophan synthase (αTS) are important for enzyme catalysis and coordinating substrate channeling with the beta subunit (βTS). It was previously shown that disrupting the hydrogen bond interactions between these loops through the T183V substitution on the β6α6 loop decreases catalytic efficiency and impairs substrate channeling. Results presented here also indicate that the T183V substitution decreases catalytic efficiency in Escherchia coli αTS in the absence of the βTS subunit. Nuclear magnetic resonance (NMR) experiments indicate that the T183V substitution leads to local changes in the structural dynamics of the β2α2 and β6α6 loops. We have also used NMR chemical shift covariance analyses (CHESCA) to map amino acid networks in the presence and absence of the T183V substitution. Under conditions of active catalytic turnover, the T183V substitution disrupts long‐range networks connecting the catalytic residue Glu49 to the αTS‐βTS binding interface, which might be important in the coordination of catalytic activities in the tryptophan synthase complex. The approach that we have developed here will likely find general utility in understanding long‐range impacts on protein structure and dynamics of amino acid substitutions generated through protein engineering and directed evolution approaches, and provide insight into disease and drug‐resistance mutations.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.2598</identifier><identifier>PMID: 25377949</identifier><identifier>CODEN: PRCIEI</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>amino acid networks ; Amino acids ; Amino Acids - chemistry ; Amino Acids - metabolism ; Catalysis ; Catalytic Domain ; chemical shift covariance analysis ; enzyme mechanisms ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; Hydrogen Bonding ; Hydrogen bonds ; Kinetics ; Models, Molecular ; NMR ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; protein dynamics ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; tryptophan synthase ; Tryptophan Synthase - chemistry ; Tryptophan Synthase - metabolism</subject><ispartof>Protein science, 2015-04, Vol.24 (4), p.484-494</ispartof><rights>2014 The Protein Society</rights><rights>2014 The Protein Society.</rights><rights>2015 The Protein Society</rights><rights>2014 The Protein Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4388-2de368422ff874f296caaccae93c01c83314327ef931eade6ccd1fb4b29fa2053</citedby><cites>FETCH-LOGICAL-c4388-2de368422ff874f296caaccae93c01c83314327ef931eade6ccd1fb4b29fa2053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380980/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380980/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25377949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Axe, Jennifer M.</creatorcontrib><creatorcontrib>O'Rourke, Kathleen F.</creatorcontrib><creatorcontrib>Kerstetter, Nicole E.</creatorcontrib><creatorcontrib>Yezdimer, Eric M.</creatorcontrib><creatorcontrib>Chan, Yan M.</creatorcontrib><creatorcontrib>Chasin, Alexander</creatorcontrib><creatorcontrib>Boehr, David D.</creatorcontrib><title>Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Conformational changes in the β2α2 and β6α6 loops in the alpha subunit of tryptophan synthase (αTS) are important for enzyme catalysis and coordinating substrate channeling with the beta subunit (βTS). It was previously shown that disrupting the hydrogen bond interactions between these loops through the T183V substitution on the β6α6 loop decreases catalytic efficiency and impairs substrate channeling. Results presented here also indicate that the T183V substitution decreases catalytic efficiency in Escherchia coli αTS in the absence of the βTS subunit. Nuclear magnetic resonance (NMR) experiments indicate that the T183V substitution leads to local changes in the structural dynamics of the β2α2 and β6α6 loops. We have also used NMR chemical shift covariance analyses (CHESCA) to map amino acid networks in the presence and absence of the T183V substitution. Under conditions of active catalytic turnover, the T183V substitution disrupts long‐range networks connecting the catalytic residue Glu49 to the αTS‐βTS binding interface, which might be important in the coordination of catalytic activities in the tryptophan synthase complex. The approach that we have developed here will likely find general utility in understanding long‐range impacts on protein structure and dynamics of amino acid substitutions generated through protein engineering and directed evolution approaches, and provide insight into disease and drug‐resistance mutations.</description><subject>amino acid networks</subject><subject>Amino acids</subject><subject>Amino Acids - chemistry</subject><subject>Amino Acids - metabolism</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>chemical shift covariance analysis</subject><subject>enzyme mechanisms</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Protein Conformation</subject><subject>protein dynamics</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>tryptophan synthase</subject><subject>Tryptophan Synthase - chemistry</subject><subject>Tryptophan Synthase - metabolism</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kdtqFTEUhoModlsFn0AC3ngzNYeZTHIjSKkHKFQ8gHchk1mzd-rsZEwyu8wL-Nxm2loP4NUiKx_fWosfoaeUnFBC2MsphhPWKHkPbWgtVCWV-HofbYgStJJcyCP0KKVLQkhNGX-IjljD21bVaoN-fIIDROe3OAzY4N3Sx7AFj7vge9y7FOcpJ2z2zgdsrOuxh3wV4reEncd5B9iabMYlO2vGcSlIdgfAKZsMq3ElzDjtDE5zN3uXr5txmXIoTY_T4vPOJHiMHgxmTPDkth6jL2_OPp--q84v3r4_fX1e2ZpLWbEeyjU1Y8Mg23pgSlhjrDWguCXUSs5pzVkLg-IUTA_C2p4OXd0xNRhGGn6MXt14p7nbQ2_B52hGPUW3N3HRwTj99493O70NB13GEyVJEby4FcTwfYaU9d4lC-NoPIQ5aSpEyxsqJC3o83_QyzBHX85bqaZhomHtb6GNIaUIw90ylOg13PIOeg23oM_-XP4O_JVmAaob4MqNsPxXpD98vLgW_gQZ6rJE</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Axe, Jennifer M.</creator><creator>O'Rourke, Kathleen F.</creator><creator>Kerstetter, Nicole E.</creator><creator>Yezdimer, Eric M.</creator><creator>Chan, Yan M.</creator><creator>Chasin, Alexander</creator><creator>Boehr, David D.</creator><general>Wiley Subscription Services, Inc</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201504</creationdate><title>Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase</title><author>Axe, Jennifer M. ; O'Rourke, Kathleen F. ; Kerstetter, Nicole E. ; Yezdimer, Eric M. ; Chan, Yan M. ; Chasin, Alexander ; Boehr, David D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4388-2de368422ff874f296caaccae93c01c83314327ef931eade6ccd1fb4b29fa2053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>amino acid networks</topic><topic>Amino acids</topic><topic>Amino Acids - chemistry</topic><topic>Amino Acids - metabolism</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>chemical shift covariance analysis</topic><topic>enzyme mechanisms</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Protein Conformation</topic><topic>protein dynamics</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>tryptophan synthase</topic><topic>Tryptophan Synthase - chemistry</topic><topic>Tryptophan Synthase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Axe, Jennifer M.</creatorcontrib><creatorcontrib>O'Rourke, Kathleen F.</creatorcontrib><creatorcontrib>Kerstetter, Nicole E.</creatorcontrib><creatorcontrib>Yezdimer, Eric M.</creatorcontrib><creatorcontrib>Chan, Yan M.</creatorcontrib><creatorcontrib>Chasin, Alexander</creatorcontrib><creatorcontrib>Boehr, David D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Axe, Jennifer M.</au><au>O'Rourke, Kathleen F.</au><au>Kerstetter, Nicole E.</au><au>Yezdimer, Eric M.</au><au>Chan, Yan M.</au><au>Chasin, Alexander</au><au>Boehr, David D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2015-04</date><risdate>2015</risdate><volume>24</volume><issue>4</issue><spage>484</spage><epage>494</epage><pages>484-494</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><coden>PRCIEI</coden><abstract>Conformational changes in the β2α2 and β6α6 loops in the alpha subunit of tryptophan synthase (αTS) are important for enzyme catalysis and coordinating substrate channeling with the beta subunit (βTS). It was previously shown that disrupting the hydrogen bond interactions between these loops through the T183V substitution on the β6α6 loop decreases catalytic efficiency and impairs substrate channeling. Results presented here also indicate that the T183V substitution decreases catalytic efficiency in Escherchia coli αTS in the absence of the βTS subunit. Nuclear magnetic resonance (NMR) experiments indicate that the T183V substitution leads to local changes in the structural dynamics of the β2α2 and β6α6 loops. We have also used NMR chemical shift covariance analyses (CHESCA) to map amino acid networks in the presence and absence of the T183V substitution. Under conditions of active catalytic turnover, the T183V substitution disrupts long‐range networks connecting the catalytic residue Glu49 to the αTS‐βTS binding interface, which might be important in the coordination of catalytic activities in the tryptophan synthase complex. The approach that we have developed here will likely find general utility in understanding long‐range impacts on protein structure and dynamics of amino acid substitutions generated through protein engineering and directed evolution approaches, and provide insight into disease and drug‐resistance mutations.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>25377949</pmid><doi>10.1002/pro.2598</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2015-04, Vol.24 (4), p.484-494
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4380980
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects amino acid networks
Amino acids
Amino Acids - chemistry
Amino Acids - metabolism
Catalysis
Catalytic Domain
chemical shift covariance analysis
enzyme mechanisms
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - metabolism
Hydrogen Bonding
Hydrogen bonds
Kinetics
Models, Molecular
NMR
Nuclear magnetic resonance
Nuclear Magnetic Resonance, Biomolecular
Protein Conformation
protein dynamics
Protein Subunits - chemistry
Protein Subunits - metabolism
tryptophan synthase
Tryptophan Synthase - chemistry
Tryptophan Synthase - metabolism
title Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Severing%20of%20a%20hydrogen%20bond%20disrupts%20amino%20acid%20networks%20in%20the%20catalytically%20active%20state%20of%20the%20alpha%20subunit%20of%20tryptophan%20synthase&rft.jtitle=Protein%20science&rft.au=Axe,%20Jennifer%20M.&rft.date=2015-04&rft.volume=24&rft.issue=4&rft.spage=484&rft.epage=494&rft.pages=484-494&rft.issn=0961-8368&rft.eissn=1469-896X&rft.coden=PRCIEI&rft_id=info:doi/10.1002/pro.2598&rft_dat=%3Cproquest_pubme%3E1667351681%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1665526527&rft_id=info:pmid/25377949&rfr_iscdi=true