Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase
Conformational changes in the β2α2 and β6α6 loops in the alpha subunit of tryptophan synthase (αTS) are important for enzyme catalysis and coordinating substrate channeling with the beta subunit (βTS). It was previously shown that disrupting the hydrogen bond interactions between these loops through...
Gespeichert in:
Veröffentlicht in: | Protein science 2015-04, Vol.24 (4), p.484-494 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 494 |
---|---|
container_issue | 4 |
container_start_page | 484 |
container_title | Protein science |
container_volume | 24 |
creator | Axe, Jennifer M. O'Rourke, Kathleen F. Kerstetter, Nicole E. Yezdimer, Eric M. Chan, Yan M. Chasin, Alexander Boehr, David D. |
description | Conformational changes in the β2α2 and β6α6 loops in the alpha subunit of tryptophan synthase (αTS) are important for enzyme catalysis and coordinating substrate channeling with the beta subunit (βTS). It was previously shown that disrupting the hydrogen bond interactions between these loops through the T183V substitution on the β6α6 loop decreases catalytic efficiency and impairs substrate channeling. Results presented here also indicate that the T183V substitution decreases catalytic efficiency in Escherchia coli αTS in the absence of the βTS subunit. Nuclear magnetic resonance (NMR) experiments indicate that the T183V substitution leads to local changes in the structural dynamics of the β2α2 and β6α6 loops. We have also used NMR chemical shift covariance analyses (CHESCA) to map amino acid networks in the presence and absence of the T183V substitution. Under conditions of active catalytic turnover, the T183V substitution disrupts long‐range networks connecting the catalytic residue Glu49 to the αTS‐βTS binding interface, which might be important in the coordination of catalytic activities in the tryptophan synthase complex. The approach that we have developed here will likely find general utility in understanding long‐range impacts on protein structure and dynamics of amino acid substitutions generated through protein engineering and directed evolution approaches, and provide insight into disease and drug‐resistance mutations. |
doi_str_mv | 10.1002/pro.2598 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4380980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1667351681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4388-2de368422ff874f296caaccae93c01c83314327ef931eade6ccd1fb4b29fa2053</originalsourceid><addsrcrecordid>eNp1kdtqFTEUhoModlsFn0AC3ngzNYeZTHIjSKkHKFQ8gHchk1mzd-rsZEwyu8wL-Nxm2loP4NUiKx_fWosfoaeUnFBC2MsphhPWKHkPbWgtVCWV-HofbYgStJJcyCP0KKVLQkhNGX-IjljD21bVaoN-fIIDROe3OAzY4N3Sx7AFj7vge9y7FOcpJ2z2zgdsrOuxh3wV4reEncd5B9iabMYlO2vGcSlIdgfAKZsMq3ElzDjtDE5zN3uXr5txmXIoTY_T4vPOJHiMHgxmTPDkth6jL2_OPp--q84v3r4_fX1e2ZpLWbEeyjU1Y8Mg23pgSlhjrDWguCXUSs5pzVkLg-IUTA_C2p4OXd0xNRhGGn6MXt14p7nbQ2_B52hGPUW3N3HRwTj99493O70NB13GEyVJEby4FcTwfYaU9d4lC-NoPIQ5aSpEyxsqJC3o83_QyzBHX85bqaZhomHtb6GNIaUIw90ylOg13PIOeg23oM_-XP4O_JVmAaob4MqNsPxXpD98vLgW_gQZ6rJE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1665526527</pqid></control><display><type>article</type><title>Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Axe, Jennifer M. ; O'Rourke, Kathleen F. ; Kerstetter, Nicole E. ; Yezdimer, Eric M. ; Chan, Yan M. ; Chasin, Alexander ; Boehr, David D.</creator><creatorcontrib>Axe, Jennifer M. ; O'Rourke, Kathleen F. ; Kerstetter, Nicole E. ; Yezdimer, Eric M. ; Chan, Yan M. ; Chasin, Alexander ; Boehr, David D.</creatorcontrib><description>Conformational changes in the β2α2 and β6α6 loops in the alpha subunit of tryptophan synthase (αTS) are important for enzyme catalysis and coordinating substrate channeling with the beta subunit (βTS). It was previously shown that disrupting the hydrogen bond interactions between these loops through the T183V substitution on the β6α6 loop decreases catalytic efficiency and impairs substrate channeling. Results presented here also indicate that the T183V substitution decreases catalytic efficiency in Escherchia coli αTS in the absence of the βTS subunit. Nuclear magnetic resonance (NMR) experiments indicate that the T183V substitution leads to local changes in the structural dynamics of the β2α2 and β6α6 loops. We have also used NMR chemical shift covariance analyses (CHESCA) to map amino acid networks in the presence and absence of the T183V substitution. Under conditions of active catalytic turnover, the T183V substitution disrupts long‐range networks connecting the catalytic residue Glu49 to the αTS‐βTS binding interface, which might be important in the coordination of catalytic activities in the tryptophan synthase complex. The approach that we have developed here will likely find general utility in understanding long‐range impacts on protein structure and dynamics of amino acid substitutions generated through protein engineering and directed evolution approaches, and provide insight into disease and drug‐resistance mutations.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.2598</identifier><identifier>PMID: 25377949</identifier><identifier>CODEN: PRCIEI</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>amino acid networks ; Amino acids ; Amino Acids - chemistry ; Amino Acids - metabolism ; Catalysis ; Catalytic Domain ; chemical shift covariance analysis ; enzyme mechanisms ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; Hydrogen Bonding ; Hydrogen bonds ; Kinetics ; Models, Molecular ; NMR ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; protein dynamics ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; tryptophan synthase ; Tryptophan Synthase - chemistry ; Tryptophan Synthase - metabolism</subject><ispartof>Protein science, 2015-04, Vol.24 (4), p.484-494</ispartof><rights>2014 The Protein Society</rights><rights>2014 The Protein Society.</rights><rights>2015 The Protein Society</rights><rights>2014 The Protein Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4388-2de368422ff874f296caaccae93c01c83314327ef931eade6ccd1fb4b29fa2053</citedby><cites>FETCH-LOGICAL-c4388-2de368422ff874f296caaccae93c01c83314327ef931eade6ccd1fb4b29fa2053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380980/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380980/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25377949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Axe, Jennifer M.</creatorcontrib><creatorcontrib>O'Rourke, Kathleen F.</creatorcontrib><creatorcontrib>Kerstetter, Nicole E.</creatorcontrib><creatorcontrib>Yezdimer, Eric M.</creatorcontrib><creatorcontrib>Chan, Yan M.</creatorcontrib><creatorcontrib>Chasin, Alexander</creatorcontrib><creatorcontrib>Boehr, David D.</creatorcontrib><title>Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Conformational changes in the β2α2 and β6α6 loops in the alpha subunit of tryptophan synthase (αTS) are important for enzyme catalysis and coordinating substrate channeling with the beta subunit (βTS). It was previously shown that disrupting the hydrogen bond interactions between these loops through the T183V substitution on the β6α6 loop decreases catalytic efficiency and impairs substrate channeling. Results presented here also indicate that the T183V substitution decreases catalytic efficiency in Escherchia coli αTS in the absence of the βTS subunit. Nuclear magnetic resonance (NMR) experiments indicate that the T183V substitution leads to local changes in the structural dynamics of the β2α2 and β6α6 loops. We have also used NMR chemical shift covariance analyses (CHESCA) to map amino acid networks in the presence and absence of the T183V substitution. Under conditions of active catalytic turnover, the T183V substitution disrupts long‐range networks connecting the catalytic residue Glu49 to the αTS‐βTS binding interface, which might be important in the coordination of catalytic activities in the tryptophan synthase complex. The approach that we have developed here will likely find general utility in understanding long‐range impacts on protein structure and dynamics of amino acid substitutions generated through protein engineering and directed evolution approaches, and provide insight into disease and drug‐resistance mutations.</description><subject>amino acid networks</subject><subject>Amino acids</subject><subject>Amino Acids - chemistry</subject><subject>Amino Acids - metabolism</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>chemical shift covariance analysis</subject><subject>enzyme mechanisms</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Protein Conformation</subject><subject>protein dynamics</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>tryptophan synthase</subject><subject>Tryptophan Synthase - chemistry</subject><subject>Tryptophan Synthase - metabolism</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kdtqFTEUhoModlsFn0AC3ngzNYeZTHIjSKkHKFQ8gHchk1mzd-rsZEwyu8wL-Nxm2loP4NUiKx_fWosfoaeUnFBC2MsphhPWKHkPbWgtVCWV-HofbYgStJJcyCP0KKVLQkhNGX-IjljD21bVaoN-fIIDROe3OAzY4N3Sx7AFj7vge9y7FOcpJ2z2zgdsrOuxh3wV4reEncd5B9iabMYlO2vGcSlIdgfAKZsMq3ElzDjtDE5zN3uXr5txmXIoTY_T4vPOJHiMHgxmTPDkth6jL2_OPp--q84v3r4_fX1e2ZpLWbEeyjU1Y8Mg23pgSlhjrDWguCXUSs5pzVkLg-IUTA_C2p4OXd0xNRhGGn6MXt14p7nbQ2_B52hGPUW3N3HRwTj99493O70NB13GEyVJEby4FcTwfYaU9d4lC-NoPIQ5aSpEyxsqJC3o83_QyzBHX85bqaZhomHtb6GNIaUIw90ylOg13PIOeg23oM_-XP4O_JVmAaob4MqNsPxXpD98vLgW_gQZ6rJE</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Axe, Jennifer M.</creator><creator>O'Rourke, Kathleen F.</creator><creator>Kerstetter, Nicole E.</creator><creator>Yezdimer, Eric M.</creator><creator>Chan, Yan M.</creator><creator>Chasin, Alexander</creator><creator>Boehr, David D.</creator><general>Wiley Subscription Services, Inc</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201504</creationdate><title>Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase</title><author>Axe, Jennifer M. ; O'Rourke, Kathleen F. ; Kerstetter, Nicole E. ; Yezdimer, Eric M. ; Chan, Yan M. ; Chasin, Alexander ; Boehr, David D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4388-2de368422ff874f296caaccae93c01c83314327ef931eade6ccd1fb4b29fa2053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>amino acid networks</topic><topic>Amino acids</topic><topic>Amino Acids - chemistry</topic><topic>Amino Acids - metabolism</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>chemical shift covariance analysis</topic><topic>enzyme mechanisms</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Protein Conformation</topic><topic>protein dynamics</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>tryptophan synthase</topic><topic>Tryptophan Synthase - chemistry</topic><topic>Tryptophan Synthase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Axe, Jennifer M.</creatorcontrib><creatorcontrib>O'Rourke, Kathleen F.</creatorcontrib><creatorcontrib>Kerstetter, Nicole E.</creatorcontrib><creatorcontrib>Yezdimer, Eric M.</creatorcontrib><creatorcontrib>Chan, Yan M.</creatorcontrib><creatorcontrib>Chasin, Alexander</creatorcontrib><creatorcontrib>Boehr, David D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Axe, Jennifer M.</au><au>O'Rourke, Kathleen F.</au><au>Kerstetter, Nicole E.</au><au>Yezdimer, Eric M.</au><au>Chan, Yan M.</au><au>Chasin, Alexander</au><au>Boehr, David D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2015-04</date><risdate>2015</risdate><volume>24</volume><issue>4</issue><spage>484</spage><epage>494</epage><pages>484-494</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><coden>PRCIEI</coden><abstract>Conformational changes in the β2α2 and β6α6 loops in the alpha subunit of tryptophan synthase (αTS) are important for enzyme catalysis and coordinating substrate channeling with the beta subunit (βTS). It was previously shown that disrupting the hydrogen bond interactions between these loops through the T183V substitution on the β6α6 loop decreases catalytic efficiency and impairs substrate channeling. Results presented here also indicate that the T183V substitution decreases catalytic efficiency in Escherchia coli αTS in the absence of the βTS subunit. Nuclear magnetic resonance (NMR) experiments indicate that the T183V substitution leads to local changes in the structural dynamics of the β2α2 and β6α6 loops. We have also used NMR chemical shift covariance analyses (CHESCA) to map amino acid networks in the presence and absence of the T183V substitution. Under conditions of active catalytic turnover, the T183V substitution disrupts long‐range networks connecting the catalytic residue Glu49 to the αTS‐βTS binding interface, which might be important in the coordination of catalytic activities in the tryptophan synthase complex. The approach that we have developed here will likely find general utility in understanding long‐range impacts on protein structure and dynamics of amino acid substitutions generated through protein engineering and directed evolution approaches, and provide insight into disease and drug‐resistance mutations.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>25377949</pmid><doi>10.1002/pro.2598</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2015-04, Vol.24 (4), p.484-494 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4380980 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | amino acid networks Amino acids Amino Acids - chemistry Amino Acids - metabolism Catalysis Catalytic Domain chemical shift covariance analysis enzyme mechanisms Escherichia coli Proteins - chemistry Escherichia coli Proteins - metabolism Hydrogen Bonding Hydrogen bonds Kinetics Models, Molecular NMR Nuclear magnetic resonance Nuclear Magnetic Resonance, Biomolecular Protein Conformation protein dynamics Protein Subunits - chemistry Protein Subunits - metabolism tryptophan synthase Tryptophan Synthase - chemistry Tryptophan Synthase - metabolism |
title | Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Severing%20of%20a%20hydrogen%20bond%20disrupts%20amino%20acid%20networks%20in%20the%20catalytically%20active%20state%20of%20the%20alpha%20subunit%20of%20tryptophan%20synthase&rft.jtitle=Protein%20science&rft.au=Axe,%20Jennifer%20M.&rft.date=2015-04&rft.volume=24&rft.issue=4&rft.spage=484&rft.epage=494&rft.pages=484-494&rft.issn=0961-8368&rft.eissn=1469-896X&rft.coden=PRCIEI&rft_id=info:doi/10.1002/pro.2598&rft_dat=%3Cproquest_pubme%3E1667351681%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1665526527&rft_id=info:pmid/25377949&rfr_iscdi=true |