Local statistics allow quantification of cell-to-cell variability from high-throughput microscope images
Quantifying variability in protein expression is a major goal of systems biology and cell-to-cell variability in subcellular localization pattern has not been systematically quantified. We define a local measure to quantify cell-to-cell variability in high-throughput microscope images and show that...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2015-03, Vol.31 (6), p.940-947 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 947 |
---|---|
container_issue | 6 |
container_start_page | 940 |
container_title | Bioinformatics |
container_volume | 31 |
creator | Handfield, Louis-François Strome, Bob Chong, Yolanda T Moses, Alan M |
description | Quantifying variability in protein expression is a major goal of systems biology and cell-to-cell variability in subcellular localization pattern has not been systematically quantified.
We define a local measure to quantify cell-to-cell variability in high-throughput microscope images and show that it allows comparable measures of variability for proteins with diverse subcellular localizations. We systematically estimate cell-to-cell variability in the yeast GFP collection and identify examples of proteins that show cell-to-cell variability in their subcellular localization.
Automated image analysis methods can be used to quantify cell-to-cell variability in microscope images. |
doi_str_mv | 10.1093/bioinformatics/btu759 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4380034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701474608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-14399ea299efe9379ddd1ab745b8f250dc632345373ec6d8b53ed387ac4a2b3e3</originalsourceid><addsrcrecordid>eNqNkctKxTAQhoMo3h9BydJNNenk0m4EEW9wwI2uQ5qmp5G2OSap4tvbcvSgK93MDJN_PmbyI3RCyTklJVxUzruh8aHXyZl4UaVR8nIL7VMQMmMFpdubmsAeOojxhRDCCRe7aC_nUBaCsn3ULrzRHY5pwsSZhHXX-Xf8OuohucaZqe8H7BtsbNdlyWdzxm86OF25zqUP3ATf49Yt2yy1wY_LdjUm3DsTfDR-ZbHr9dLGI7TT6C7a4698iJ5vb56u77PF493D9dUiM5xByiiDsrQ6n0JjS5BlXddUV5LxqmhyTmojIAfGQYI1oi4qDraGQmrDdF6BhUN0ueauxqq3tbFDCrpTqzCtET6U1079fhlcq5b-TTEoCAE2Ac6-AMG_jjYm1bs4H60H68eoqCSlLCAX8B8pZZIJUvwtFYJJyYWkk5SvpfMPxmCbzfKUqNl79dt7tfZ-mjv9eflm6tts-AQUubO4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664775671</pqid></control><display><type>article</type><title>Local statistics allow quantification of cell-to-cell variability from high-throughput microscope images</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Handfield, Louis-François ; Strome, Bob ; Chong, Yolanda T ; Moses, Alan M</creator><creatorcontrib>Handfield, Louis-François ; Strome, Bob ; Chong, Yolanda T ; Moses, Alan M</creatorcontrib><description>Quantifying variability in protein expression is a major goal of systems biology and cell-to-cell variability in subcellular localization pattern has not been systematically quantified.
We define a local measure to quantify cell-to-cell variability in high-throughput microscope images and show that it allows comparable measures of variability for proteins with diverse subcellular localizations. We systematically estimate cell-to-cell variability in the yeast GFP collection and identify examples of proteins that show cell-to-cell variability in their subcellular localization.
Automated image analysis methods can be used to quantify cell-to-cell variability in microscope images.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/btu759</identifier><identifier>PMID: 25398614</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bioinformatics ; Biology ; Cell Lineage ; Diagnostic Imaging - statistics & numerical data ; High-Throughput Screening Assays - methods ; Localization ; Microscopes ; Microscopy, Fluorescence - methods ; Models, Statistical ; Original Papers ; Position (location) ; Proteins ; Proteomics - methods ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Statistics</subject><ispartof>Bioinformatics, 2015-03, Vol.31 (6), p.940-947</ispartof><rights>The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-14399ea299efe9379ddd1ab745b8f250dc632345373ec6d8b53ed387ac4a2b3e3</citedby><cites>FETCH-LOGICAL-c543t-14399ea299efe9379ddd1ab745b8f250dc632345373ec6d8b53ed387ac4a2b3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380034/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380034/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25398614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Handfield, Louis-François</creatorcontrib><creatorcontrib>Strome, Bob</creatorcontrib><creatorcontrib>Chong, Yolanda T</creatorcontrib><creatorcontrib>Moses, Alan M</creatorcontrib><title>Local statistics allow quantification of cell-to-cell variability from high-throughput microscope images</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Quantifying variability in protein expression is a major goal of systems biology and cell-to-cell variability in subcellular localization pattern has not been systematically quantified.
We define a local measure to quantify cell-to-cell variability in high-throughput microscope images and show that it allows comparable measures of variability for proteins with diverse subcellular localizations. We systematically estimate cell-to-cell variability in the yeast GFP collection and identify examples of proteins that show cell-to-cell variability in their subcellular localization.
Automated image analysis methods can be used to quantify cell-to-cell variability in microscope images.</description><subject>Bioinformatics</subject><subject>Biology</subject><subject>Cell Lineage</subject><subject>Diagnostic Imaging - statistics & numerical data</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Localization</subject><subject>Microscopes</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Models, Statistical</subject><subject>Original Papers</subject><subject>Position (location)</subject><subject>Proteins</subject><subject>Proteomics - methods</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Statistics</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctKxTAQhoMo3h9BydJNNenk0m4EEW9wwI2uQ5qmp5G2OSap4tvbcvSgK93MDJN_PmbyI3RCyTklJVxUzruh8aHXyZl4UaVR8nIL7VMQMmMFpdubmsAeOojxhRDCCRe7aC_nUBaCsn3ULrzRHY5pwsSZhHXX-Xf8OuohucaZqe8H7BtsbNdlyWdzxm86OF25zqUP3ATf49Yt2yy1wY_LdjUm3DsTfDR-ZbHr9dLGI7TT6C7a4698iJ5vb56u77PF493D9dUiM5xByiiDsrQ6n0JjS5BlXddUV5LxqmhyTmojIAfGQYI1oi4qDraGQmrDdF6BhUN0ueauxqq3tbFDCrpTqzCtET6U1079fhlcq5b-TTEoCAE2Ac6-AMG_jjYm1bs4H60H68eoqCSlLCAX8B8pZZIJUvwtFYJJyYWkk5SvpfMPxmCbzfKUqNl79dt7tfZ-mjv9eflm6tts-AQUubO4</recordid><startdate>20150315</startdate><enddate>20150315</enddate><creator>Handfield, Louis-François</creator><creator>Strome, Bob</creator><creator>Chong, Yolanda T</creator><creator>Moses, Alan M</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20150315</creationdate><title>Local statistics allow quantification of cell-to-cell variability from high-throughput microscope images</title><author>Handfield, Louis-François ; Strome, Bob ; Chong, Yolanda T ; Moses, Alan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-14399ea299efe9379ddd1ab745b8f250dc632345373ec6d8b53ed387ac4a2b3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bioinformatics</topic><topic>Biology</topic><topic>Cell Lineage</topic><topic>Diagnostic Imaging - statistics & numerical data</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Localization</topic><topic>Microscopes</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Models, Statistical</topic><topic>Original Papers</topic><topic>Position (location)</topic><topic>Proteins</topic><topic>Proteomics - methods</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Handfield, Louis-François</creatorcontrib><creatorcontrib>Strome, Bob</creatorcontrib><creatorcontrib>Chong, Yolanda T</creatorcontrib><creatorcontrib>Moses, Alan M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Handfield, Louis-François</au><au>Strome, Bob</au><au>Chong, Yolanda T</au><au>Moses, Alan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local statistics allow quantification of cell-to-cell variability from high-throughput microscope images</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2015-03-15</date><risdate>2015</risdate><volume>31</volume><issue>6</issue><spage>940</spage><epage>947</epage><pages>940-947</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>Quantifying variability in protein expression is a major goal of systems biology and cell-to-cell variability in subcellular localization pattern has not been systematically quantified.
We define a local measure to quantify cell-to-cell variability in high-throughput microscope images and show that it allows comparable measures of variability for proteins with diverse subcellular localizations. We systematically estimate cell-to-cell variability in the yeast GFP collection and identify examples of proteins that show cell-to-cell variability in their subcellular localization.
Automated image analysis methods can be used to quantify cell-to-cell variability in microscope images.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25398614</pmid><doi>10.1093/bioinformatics/btu759</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2015-03, Vol.31 (6), p.940-947 |
issn | 1367-4803 1367-4811 1460-2059 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4380034 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection |
subjects | Bioinformatics Biology Cell Lineage Diagnostic Imaging - statistics & numerical data High-Throughput Screening Assays - methods Localization Microscopes Microscopy, Fluorescence - methods Models, Statistical Original Papers Position (location) Proteins Proteomics - methods Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Statistics |
title | Local statistics allow quantification of cell-to-cell variability from high-throughput microscope images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A09%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20statistics%20allow%20quantification%20of%20cell-to-cell%20variability%20from%20high-throughput%20microscope%20images&rft.jtitle=Bioinformatics&rft.au=Handfield,%20Louis-Fran%C3%A7ois&rft.date=2015-03-15&rft.volume=31&rft.issue=6&rft.spage=940&rft.epage=947&rft.pages=940-947&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btu759&rft_dat=%3Cproquest_pubme%3E1701474608%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664775671&rft_id=info:pmid/25398614&rfr_iscdi=true |