Crowding Induces Complex Ergodic Diffusion and Dynamic Elongation of Large DNA Molecules

Despite the ubiquity of molecular crowding in living cells, the effects of crowding on the dynamics of genome-sized DNA are poorly understood. Here, we track single, fluorescent-labeled large DNA molecules (11, 115 kbp) diffusing in dextran solutions that mimic intracellular crowding conditions (0–4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2015-03, Vol.108 (5), p.1220-1228
Hauptverfasser: Chapman, Cole D., Gorczyca, Stephanie, Robertson-Anderson, Rae M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1228
container_issue 5
container_start_page 1220
container_title Biophysical journal
container_volume 108
creator Chapman, Cole D.
Gorczyca, Stephanie
Robertson-Anderson, Rae M.
description Despite the ubiquity of molecular crowding in living cells, the effects of crowding on the dynamics of genome-sized DNA are poorly understood. Here, we track single, fluorescent-labeled large DNA molecules (11, 115 kbp) diffusing in dextran solutions that mimic intracellular crowding conditions (0–40%), and determine the effects of crowding on both DNA mobility and conformation. Both DNAs exhibit ergodic Brownian motion and comparable mobility reduction in all conditions; however, crowder size (10 vs. 500 kDa) plays a critical role in the underlying diffusive mechanisms and dependence on crowder concentration. Surprisingly, in 10-kDa dextran, crowder influence saturates at ∼20% with an ∼5× drop in DNA diffusion, in stark contrast to exponentially retarded mobility, coupled to weak anomalous subdiffusion, with increasing concentration of 500-kDa dextran. Both DNAs elongate into lower-entropy states (compared to random coil conformations) when crowded, with elongation states that are gamma distributed and fluctuate in time. However, the broadness of the distribution of states and the time-dependence and length scale of elongation length fluctuations depend on both DNA and crowder size with concentration having surprisingly little impact. Results collectively show that mobility reduction and coil elongation of large crowded DNAs are due to a complex interplay between entropic effects and crowder mobility. Although elongation and initial mobility retardation are driven by depletion interactions, subdiffusive dynamics, and the drastic exponential slowing of DNA, up to ∼300×, arise from the reduced mobility of larger crowders. Our results elucidate the highly important and widely debated effects of cellular crowding on genome-sized DNA.
doi_str_mv 10.1016/j.bpj.2015.02.002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4375539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634951500154X</els_id><sourcerecordid>3628954141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-4ac9f7fec1764d78330b1078fa14f4ac4ffde4bd982a5bddd6e269caf1fa00ad3</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7rj6A7xIgxcv3VY-Ot2NICwzs-vCqBcFbyGdjzZNTzIm3av7780w66IexFOg6qmXVD0IPcdQYcD89Vj1h7EigOsKSAVAHqAVrhkpAVr-EK0AgJeUdfUZepLSCIBJDfgxOiN1wwmldIW-rGP4rp0fimuvF2VSsQ77w2R-FNs4BO1UsXHWLskFX0ivi82tl_tc3U7BD3I-loMtdjIOpth8uCjeh8moZTLpKXpk5ZTMs7v3HH2-3H5avyt3H6-u1xe7UtVNO5dMqs421ijccKabllLoMTStlZjZ3GTWasN63bVE1r3WmhvCOyUtthJAanqO3p5yD0u_N1oZP0c5iUN0exlvRZBO_Nnx7qsYwo1gtKlr2uWAV3cBMXxbTJrF3iVlpkl6E5YkcIs7TBv4H5RzymvetiyjL_9Cx7BEny9xpBhrScdppvCJUjGkFI29_zcGcVQsRpEVi6NiAURkxXnmxe8L30_8cpqBNyfA5LPfOBNFUs54ZbSLRs1CB_eP-J8Tp7d9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664482963</pqid></control><display><type>article</type><title>Crowding Induces Complex Ergodic Diffusion and Dynamic Elongation of Large DNA Molecules</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Chapman, Cole D. ; Gorczyca, Stephanie ; Robertson-Anderson, Rae M.</creator><creatorcontrib>Chapman, Cole D. ; Gorczyca, Stephanie ; Robertson-Anderson, Rae M.</creatorcontrib><description>Despite the ubiquity of molecular crowding in living cells, the effects of crowding on the dynamics of genome-sized DNA are poorly understood. Here, we track single, fluorescent-labeled large DNA molecules (11, 115 kbp) diffusing in dextran solutions that mimic intracellular crowding conditions (0–40%), and determine the effects of crowding on both DNA mobility and conformation. Both DNAs exhibit ergodic Brownian motion and comparable mobility reduction in all conditions; however, crowder size (10 vs. 500 kDa) plays a critical role in the underlying diffusive mechanisms and dependence on crowder concentration. Surprisingly, in 10-kDa dextran, crowder influence saturates at ∼20% with an ∼5× drop in DNA diffusion, in stark contrast to exponentially retarded mobility, coupled to weak anomalous subdiffusion, with increasing concentration of 500-kDa dextran. Both DNAs elongate into lower-entropy states (compared to random coil conformations) when crowded, with elongation states that are gamma distributed and fluctuate in time. However, the broadness of the distribution of states and the time-dependence and length scale of elongation length fluctuations depend on both DNA and crowder size with concentration having surprisingly little impact. Results collectively show that mobility reduction and coil elongation of large crowded DNAs are due to a complex interplay between entropic effects and crowder mobility. Although elongation and initial mobility retardation are driven by depletion interactions, subdiffusive dynamics, and the drastic exponential slowing of DNA, up to ∼300×, arise from the reduced mobility of larger crowders. Our results elucidate the highly important and widely debated effects of cellular crowding on genome-sized DNA.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2015.02.002</identifier><identifier>PMID: 25762333</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biophysics ; Cells ; Deoxyribonucleic acid ; Dextrans - chemistry ; Diffusion ; DNA ; DNA, Bacterial - chemistry ; Entropy ; Genomes ; Molecules ; Motion ; Proteins and Nucleic Acids ; Solutions - chemistry</subject><ispartof>Biophysical journal, 2015-03, Vol.108 (5), p.1220-1228</ispartof><rights>2015 Biophysical Society</rights><rights>Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Mar 10, 2015</rights><rights>2015 by the Biophysical Society. 2015 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-4ac9f7fec1764d78330b1078fa14f4ac4ffde4bd982a5bddd6e269caf1fa00ad3</citedby><cites>FETCH-LOGICAL-c578t-4ac9f7fec1764d78330b1078fa14f4ac4ffde4bd982a5bddd6e269caf1fa00ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375539/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000634951500154X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25762333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chapman, Cole D.</creatorcontrib><creatorcontrib>Gorczyca, Stephanie</creatorcontrib><creatorcontrib>Robertson-Anderson, Rae M.</creatorcontrib><title>Crowding Induces Complex Ergodic Diffusion and Dynamic Elongation of Large DNA Molecules</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Despite the ubiquity of molecular crowding in living cells, the effects of crowding on the dynamics of genome-sized DNA are poorly understood. Here, we track single, fluorescent-labeled large DNA molecules (11, 115 kbp) diffusing in dextran solutions that mimic intracellular crowding conditions (0–40%), and determine the effects of crowding on both DNA mobility and conformation. Both DNAs exhibit ergodic Brownian motion and comparable mobility reduction in all conditions; however, crowder size (10 vs. 500 kDa) plays a critical role in the underlying diffusive mechanisms and dependence on crowder concentration. Surprisingly, in 10-kDa dextran, crowder influence saturates at ∼20% with an ∼5× drop in DNA diffusion, in stark contrast to exponentially retarded mobility, coupled to weak anomalous subdiffusion, with increasing concentration of 500-kDa dextran. Both DNAs elongate into lower-entropy states (compared to random coil conformations) when crowded, with elongation states that are gamma distributed and fluctuate in time. However, the broadness of the distribution of states and the time-dependence and length scale of elongation length fluctuations depend on both DNA and crowder size with concentration having surprisingly little impact. Results collectively show that mobility reduction and coil elongation of large crowded DNAs are due to a complex interplay between entropic effects and crowder mobility. Although elongation and initial mobility retardation are driven by depletion interactions, subdiffusive dynamics, and the drastic exponential slowing of DNA, up to ∼300×, arise from the reduced mobility of larger crowders. Our results elucidate the highly important and widely debated effects of cellular crowding on genome-sized DNA.</description><subject>Biophysics</subject><subject>Cells</subject><subject>Deoxyribonucleic acid</subject><subject>Dextrans - chemistry</subject><subject>Diffusion</subject><subject>DNA</subject><subject>DNA, Bacterial - chemistry</subject><subject>Entropy</subject><subject>Genomes</subject><subject>Molecules</subject><subject>Motion</subject><subject>Proteins and Nucleic Acids</subject><subject>Solutions - chemistry</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQhoMo7rj6A7xIgxcv3VY-Ot2NICwzs-vCqBcFbyGdjzZNTzIm3av7780w66IexFOg6qmXVD0IPcdQYcD89Vj1h7EigOsKSAVAHqAVrhkpAVr-EK0AgJeUdfUZepLSCIBJDfgxOiN1wwmldIW-rGP4rp0fimuvF2VSsQ77w2R-FNs4BO1UsXHWLskFX0ivi82tl_tc3U7BD3I-loMtdjIOpth8uCjeh8moZTLpKXpk5ZTMs7v3HH2-3H5avyt3H6-u1xe7UtVNO5dMqs421ijccKabllLoMTStlZjZ3GTWasN63bVE1r3WmhvCOyUtthJAanqO3p5yD0u_N1oZP0c5iUN0exlvRZBO_Nnx7qsYwo1gtKlr2uWAV3cBMXxbTJrF3iVlpkl6E5YkcIs7TBv4H5RzymvetiyjL_9Cx7BEny9xpBhrScdppvCJUjGkFI29_zcGcVQsRpEVi6NiAURkxXnmxe8L30_8cpqBNyfA5LPfOBNFUs54ZbSLRs1CB_eP-J8Tp7d9</recordid><startdate>20150310</startdate><enddate>20150310</enddate><creator>Chapman, Cole D.</creator><creator>Gorczyca, Stephanie</creator><creator>Robertson-Anderson, Rae M.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150310</creationdate><title>Crowding Induces Complex Ergodic Diffusion and Dynamic Elongation of Large DNA Molecules</title><author>Chapman, Cole D. ; Gorczyca, Stephanie ; Robertson-Anderson, Rae M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-4ac9f7fec1764d78330b1078fa14f4ac4ffde4bd982a5bddd6e269caf1fa00ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biophysics</topic><topic>Cells</topic><topic>Deoxyribonucleic acid</topic><topic>Dextrans - chemistry</topic><topic>Diffusion</topic><topic>DNA</topic><topic>DNA, Bacterial - chemistry</topic><topic>Entropy</topic><topic>Genomes</topic><topic>Molecules</topic><topic>Motion</topic><topic>Proteins and Nucleic Acids</topic><topic>Solutions - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapman, Cole D.</creatorcontrib><creatorcontrib>Gorczyca, Stephanie</creatorcontrib><creatorcontrib>Robertson-Anderson, Rae M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapman, Cole D.</au><au>Gorczyca, Stephanie</au><au>Robertson-Anderson, Rae M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crowding Induces Complex Ergodic Diffusion and Dynamic Elongation of Large DNA Molecules</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2015-03-10</date><risdate>2015</risdate><volume>108</volume><issue>5</issue><spage>1220</spage><epage>1228</epage><pages>1220-1228</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Despite the ubiquity of molecular crowding in living cells, the effects of crowding on the dynamics of genome-sized DNA are poorly understood. Here, we track single, fluorescent-labeled large DNA molecules (11, 115 kbp) diffusing in dextran solutions that mimic intracellular crowding conditions (0–40%), and determine the effects of crowding on both DNA mobility and conformation. Both DNAs exhibit ergodic Brownian motion and comparable mobility reduction in all conditions; however, crowder size (10 vs. 500 kDa) plays a critical role in the underlying diffusive mechanisms and dependence on crowder concentration. Surprisingly, in 10-kDa dextran, crowder influence saturates at ∼20% with an ∼5× drop in DNA diffusion, in stark contrast to exponentially retarded mobility, coupled to weak anomalous subdiffusion, with increasing concentration of 500-kDa dextran. Both DNAs elongate into lower-entropy states (compared to random coil conformations) when crowded, with elongation states that are gamma distributed and fluctuate in time. However, the broadness of the distribution of states and the time-dependence and length scale of elongation length fluctuations depend on both DNA and crowder size with concentration having surprisingly little impact. Results collectively show that mobility reduction and coil elongation of large crowded DNAs are due to a complex interplay between entropic effects and crowder mobility. Although elongation and initial mobility retardation are driven by depletion interactions, subdiffusive dynamics, and the drastic exponential slowing of DNA, up to ∼300×, arise from the reduced mobility of larger crowders. Our results elucidate the highly important and widely debated effects of cellular crowding on genome-sized DNA.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25762333</pmid><doi>10.1016/j.bpj.2015.02.002</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2015-03, Vol.108 (5), p.1220-1228
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4375539
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Biophysics
Cells
Deoxyribonucleic acid
Dextrans - chemistry
Diffusion
DNA
DNA, Bacterial - chemistry
Entropy
Genomes
Molecules
Motion
Proteins and Nucleic Acids
Solutions - chemistry
title Crowding Induces Complex Ergodic Diffusion and Dynamic Elongation of Large DNA Molecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A54%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crowding%20Induces%20Complex%20Ergodic%20Diffusion%20and%20Dynamic%20Elongation%20of%20Large%20DNA%20Molecules&rft.jtitle=Biophysical%20journal&rft.au=Chapman,%20Cole%C2%A0D.&rft.date=2015-03-10&rft.volume=108&rft.issue=5&rft.spage=1220&rft.epage=1228&rft.pages=1220-1228&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2015.02.002&rft_dat=%3Cproquest_pubme%3E3628954141%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664482963&rft_id=info:pmid/25762333&rft_els_id=S000634951500154X&rfr_iscdi=true