Metabolomics and partial least square discriminant analysis to predict history of myocardial infarction of self-claimed healthy subjects: validity and feasibility for clinical practice
The dynamics of metabolomics in establishing a prediction model using partial least square discriminant analysis have enabled better disease diagnosis; with emphasis on early detection of diseases. We attempted to translate the metabolomics model to predict the health status of the Orang Asli commun...
Gespeichert in:
Veröffentlicht in: | Journal of clinical bioinformatics 2015-03, Vol.5 (1), p.3-3, Article 3 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3 |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | Journal of clinical bioinformatics |
container_volume | 5 |
creator | Mohamad, Nornazliya Ismet, Rose Iszati Rofiee, MohdSalleh Bannur, Zakaria Hennessy, Thomas Selvaraj, Manikandan Ahmad, Aminuddin Nor, FadzilahMohd Abdul Rahman, ThuhairahHasrah Md Isa, Kamarudzaman Ismail, AdzroolIdzwan Teh, Lay Kek Salleh, Mohd Zaki |
description | The dynamics of metabolomics in establishing a prediction model using partial least square discriminant analysis have enabled better disease diagnosis; with emphasis on early detection of diseases. We attempted to translate the metabolomics model to predict the health status of the Orang Asli community whom we have little information. The metabolite expressions of the healthy vs. diseased patients (cardiovascular) were compared. A metabotype model was developed and validated using partial least square discriminant analysis (PLSDA). Cardiovascular risks of the Orang Asli were predicted and confirmed by biochemistry profiles conducted concurrently.
Fourteen (14) metabolites were determined as potential biomarkers for cardiovascular risks with receiver operating characteristic of more than 0.7. They include 15S-HETE (AUC = 0.997) and phosphorylcholine (AUC = 0.995). Seven Orang Asli were clustered with the patients' group and may have ongoing cardiovascular risks and problems. This is supported by biochemistry tests results that showed abnormalities in cholesterol, triglyceride, HDL and LDL levels.
The disease prediction model based on metabolites is a useful diagnostic alternative as compared to the current single biomarker assays. The former is believed to be more cost effective since a single sample run is able to provide a more comprehensive disease profile, whilst the latter require different types of sampling tubes and blood volumes. |
doi_str_mv | 10.1186/s13336-015-0018-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4371619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1666991074</sourcerecordid><originalsourceid>FETCH-LOGICAL-b3714-3a5e2f657d34ed8a8117c58c38432a826041fbf77d05c98693796629e73682c13</originalsourceid><addsrcrecordid>eNp1ks1u1DAQxy0EotXSB-CCfOSSYseJ43BAQoUCUhEXOFsTx2ancuLU9lbKm_F4OGypWgl8sUcz_s3Hfwh5ydk550q-SVwIISvG24oxrqrmCTmtWSOqnnPx9MH7hJyldM3KaYrZqefkpG4Vk5zVp-TXV5thCD5MaBKFeaQLxIzgqbeQMk03B4iWjphMxAlnmHOJAr8mTDQHukQ7osl0jymHuNLg6LQGA3HcGDg7iCZjmDdHst5VxgNOdqR7Cz7vV5oOw7U1Ob2lt-BxxLz-qcKV7Dig32wXIjUeZzQFuUQoQGNfkGcOfLJnd_eO_Lj8-P3ic3X17dOXi_dX1SA63lQCWls72XajaOyoQJUJmFYZoRpRg6ola7gbXNeNrDW9kr3oeinr3nZCqtpwsSPvjtzlMJS6jZ1zBK-XMg2Iqw6A-rFnxr3-GW51U_JL3hfAhyNgwPAfwGOPCZM-iquLuHoTt8B25PVdHTHcHGzKeiqaWO9htuGQNJdS9j1n3RbKj6EmhpSidffJONPb7vwT_-phm_c__m6K-A3m4cUj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666991074</pqid></control><display><type>article</type><title>Metabolomics and partial least square discriminant analysis to predict history of myocardial infarction of self-claimed healthy subjects: validity and feasibility for clinical practice</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><creator>Mohamad, Nornazliya ; Ismet, Rose Iszati ; Rofiee, MohdSalleh ; Bannur, Zakaria ; Hennessy, Thomas ; Selvaraj, Manikandan ; Ahmad, Aminuddin ; Nor, FadzilahMohd ; Abdul Rahman, ThuhairahHasrah ; Md Isa, Kamarudzaman ; Ismail, AdzroolIdzwan ; Teh, Lay Kek ; Salleh, Mohd Zaki</creator><creatorcontrib>Mohamad, Nornazliya ; Ismet, Rose Iszati ; Rofiee, MohdSalleh ; Bannur, Zakaria ; Hennessy, Thomas ; Selvaraj, Manikandan ; Ahmad, Aminuddin ; Nor, FadzilahMohd ; Abdul Rahman, ThuhairahHasrah ; Md Isa, Kamarudzaman ; Ismail, AdzroolIdzwan ; Teh, Lay Kek ; Salleh, Mohd Zaki</creatorcontrib><description>The dynamics of metabolomics in establishing a prediction model using partial least square discriminant analysis have enabled better disease diagnosis; with emphasis on early detection of diseases. We attempted to translate the metabolomics model to predict the health status of the Orang Asli community whom we have little information. The metabolite expressions of the healthy vs. diseased patients (cardiovascular) were compared. A metabotype model was developed and validated using partial least square discriminant analysis (PLSDA). Cardiovascular risks of the Orang Asli were predicted and confirmed by biochemistry profiles conducted concurrently.
Fourteen (14) metabolites were determined as potential biomarkers for cardiovascular risks with receiver operating characteristic of more than 0.7. They include 15S-HETE (AUC = 0.997) and phosphorylcholine (AUC = 0.995). Seven Orang Asli were clustered with the patients' group and may have ongoing cardiovascular risks and problems. This is supported by biochemistry tests results that showed abnormalities in cholesterol, triglyceride, HDL and LDL levels.
The disease prediction model based on metabolites is a useful diagnostic alternative as compared to the current single biomarker assays. The former is believed to be more cost effective since a single sample run is able to provide a more comprehensive disease profile, whilst the latter require different types of sampling tubes and blood volumes.</description><identifier>ISSN: 2043-9113</identifier><identifier>EISSN: 2043-9113</identifier><identifier>DOI: 10.1186/s13336-015-0018-4</identifier><identifier>PMID: 25806102</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><ispartof>Journal of clinical bioinformatics, 2015-03, Vol.5 (1), p.3-3, Article 3</ispartof><rights>Mohamad et al.; licensee BioMed Central. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b3714-3a5e2f657d34ed8a8117c58c38432a826041fbf77d05c98693796629e73682c13</citedby><cites>FETCH-LOGICAL-b3714-3a5e2f657d34ed8a8117c58c38432a826041fbf77d05c98693796629e73682c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4371619/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4371619/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25806102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohamad, Nornazliya</creatorcontrib><creatorcontrib>Ismet, Rose Iszati</creatorcontrib><creatorcontrib>Rofiee, MohdSalleh</creatorcontrib><creatorcontrib>Bannur, Zakaria</creatorcontrib><creatorcontrib>Hennessy, Thomas</creatorcontrib><creatorcontrib>Selvaraj, Manikandan</creatorcontrib><creatorcontrib>Ahmad, Aminuddin</creatorcontrib><creatorcontrib>Nor, FadzilahMohd</creatorcontrib><creatorcontrib>Abdul Rahman, ThuhairahHasrah</creatorcontrib><creatorcontrib>Md Isa, Kamarudzaman</creatorcontrib><creatorcontrib>Ismail, AdzroolIdzwan</creatorcontrib><creatorcontrib>Teh, Lay Kek</creatorcontrib><creatorcontrib>Salleh, Mohd Zaki</creatorcontrib><title>Metabolomics and partial least square discriminant analysis to predict history of myocardial infarction of self-claimed healthy subjects: validity and feasibility for clinical practice</title><title>Journal of clinical bioinformatics</title><addtitle>J Clin Bioinforma</addtitle><description>The dynamics of metabolomics in establishing a prediction model using partial least square discriminant analysis have enabled better disease diagnosis; with emphasis on early detection of diseases. We attempted to translate the metabolomics model to predict the health status of the Orang Asli community whom we have little information. The metabolite expressions of the healthy vs. diseased patients (cardiovascular) were compared. A metabotype model was developed and validated using partial least square discriminant analysis (PLSDA). Cardiovascular risks of the Orang Asli were predicted and confirmed by biochemistry profiles conducted concurrently.
Fourteen (14) metabolites were determined as potential biomarkers for cardiovascular risks with receiver operating characteristic of more than 0.7. They include 15S-HETE (AUC = 0.997) and phosphorylcholine (AUC = 0.995). Seven Orang Asli were clustered with the patients' group and may have ongoing cardiovascular risks and problems. This is supported by biochemistry tests results that showed abnormalities in cholesterol, triglyceride, HDL and LDL levels.
The disease prediction model based on metabolites is a useful diagnostic alternative as compared to the current single biomarker assays. The former is believed to be more cost effective since a single sample run is able to provide a more comprehensive disease profile, whilst the latter require different types of sampling tubes and blood volumes.</description><issn>2043-9113</issn><issn>2043-9113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1ks1u1DAQxy0EotXSB-CCfOSSYseJ43BAQoUCUhEXOFsTx2ancuLU9lbKm_F4OGypWgl8sUcz_s3Hfwh5ydk550q-SVwIISvG24oxrqrmCTmtWSOqnnPx9MH7hJyldM3KaYrZqefkpG4Vk5zVp-TXV5thCD5MaBKFeaQLxIzgqbeQMk03B4iWjphMxAlnmHOJAr8mTDQHukQ7osl0jymHuNLg6LQGA3HcGDg7iCZjmDdHst5VxgNOdqR7Cz7vV5oOw7U1Ob2lt-BxxLz-qcKV7Dig32wXIjUeZzQFuUQoQGNfkGcOfLJnd_eO_Lj8-P3ic3X17dOXi_dX1SA63lQCWls72XajaOyoQJUJmFYZoRpRg6ola7gbXNeNrDW9kr3oeinr3nZCqtpwsSPvjtzlMJS6jZ1zBK-XMg2Iqw6A-rFnxr3-GW51U_JL3hfAhyNgwPAfwGOPCZM-iquLuHoTt8B25PVdHTHcHGzKeiqaWO9htuGQNJdS9j1n3RbKj6EmhpSidffJONPb7vwT_-phm_c__m6K-A3m4cUj</recordid><startdate>20150313</startdate><enddate>20150313</enddate><creator>Mohamad, Nornazliya</creator><creator>Ismet, Rose Iszati</creator><creator>Rofiee, MohdSalleh</creator><creator>Bannur, Zakaria</creator><creator>Hennessy, Thomas</creator><creator>Selvaraj, Manikandan</creator><creator>Ahmad, Aminuddin</creator><creator>Nor, FadzilahMohd</creator><creator>Abdul Rahman, ThuhairahHasrah</creator><creator>Md Isa, Kamarudzaman</creator><creator>Ismail, AdzroolIdzwan</creator><creator>Teh, Lay Kek</creator><creator>Salleh, Mohd Zaki</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150313</creationdate><title>Metabolomics and partial least square discriminant analysis to predict history of myocardial infarction of self-claimed healthy subjects: validity and feasibility for clinical practice</title><author>Mohamad, Nornazliya ; Ismet, Rose Iszati ; Rofiee, MohdSalleh ; Bannur, Zakaria ; Hennessy, Thomas ; Selvaraj, Manikandan ; Ahmad, Aminuddin ; Nor, FadzilahMohd ; Abdul Rahman, ThuhairahHasrah ; Md Isa, Kamarudzaman ; Ismail, AdzroolIdzwan ; Teh, Lay Kek ; Salleh, Mohd Zaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b3714-3a5e2f657d34ed8a8117c58c38432a826041fbf77d05c98693796629e73682c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamad, Nornazliya</creatorcontrib><creatorcontrib>Ismet, Rose Iszati</creatorcontrib><creatorcontrib>Rofiee, MohdSalleh</creatorcontrib><creatorcontrib>Bannur, Zakaria</creatorcontrib><creatorcontrib>Hennessy, Thomas</creatorcontrib><creatorcontrib>Selvaraj, Manikandan</creatorcontrib><creatorcontrib>Ahmad, Aminuddin</creatorcontrib><creatorcontrib>Nor, FadzilahMohd</creatorcontrib><creatorcontrib>Abdul Rahman, ThuhairahHasrah</creatorcontrib><creatorcontrib>Md Isa, Kamarudzaman</creatorcontrib><creatorcontrib>Ismail, AdzroolIdzwan</creatorcontrib><creatorcontrib>Teh, Lay Kek</creatorcontrib><creatorcontrib>Salleh, Mohd Zaki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamad, Nornazliya</au><au>Ismet, Rose Iszati</au><au>Rofiee, MohdSalleh</au><au>Bannur, Zakaria</au><au>Hennessy, Thomas</au><au>Selvaraj, Manikandan</au><au>Ahmad, Aminuddin</au><au>Nor, FadzilahMohd</au><au>Abdul Rahman, ThuhairahHasrah</au><au>Md Isa, Kamarudzaman</au><au>Ismail, AdzroolIdzwan</au><au>Teh, Lay Kek</au><au>Salleh, Mohd Zaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolomics and partial least square discriminant analysis to predict history of myocardial infarction of self-claimed healthy subjects: validity and feasibility for clinical practice</atitle><jtitle>Journal of clinical bioinformatics</jtitle><addtitle>J Clin Bioinforma</addtitle><date>2015-03-13</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>3</spage><epage>3</epage><pages>3-3</pages><artnum>3</artnum><issn>2043-9113</issn><eissn>2043-9113</eissn><abstract>The dynamics of metabolomics in establishing a prediction model using partial least square discriminant analysis have enabled better disease diagnosis; with emphasis on early detection of diseases. We attempted to translate the metabolomics model to predict the health status of the Orang Asli community whom we have little information. The metabolite expressions of the healthy vs. diseased patients (cardiovascular) were compared. A metabotype model was developed and validated using partial least square discriminant analysis (PLSDA). Cardiovascular risks of the Orang Asli were predicted and confirmed by biochemistry profiles conducted concurrently.
Fourteen (14) metabolites were determined as potential biomarkers for cardiovascular risks with receiver operating characteristic of more than 0.7. They include 15S-HETE (AUC = 0.997) and phosphorylcholine (AUC = 0.995). Seven Orang Asli were clustered with the patients' group and may have ongoing cardiovascular risks and problems. This is supported by biochemistry tests results that showed abnormalities in cholesterol, triglyceride, HDL and LDL levels.
The disease prediction model based on metabolites is a useful diagnostic alternative as compared to the current single biomarker assays. The former is believed to be more cost effective since a single sample run is able to provide a more comprehensive disease profile, whilst the latter require different types of sampling tubes and blood volumes.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>25806102</pmid><doi>10.1186/s13336-015-0018-4</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2043-9113 |
ispartof | Journal of clinical bioinformatics, 2015-03, Vol.5 (1), p.3-3, Article 3 |
issn | 2043-9113 2043-9113 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4371619 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; PubMed Central |
title | Metabolomics and partial least square discriminant analysis to predict history of myocardial infarction of self-claimed healthy subjects: validity and feasibility for clinical practice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolomics%20and%20partial%20least%20square%20discriminant%20analysis%20to%20predict%20history%20of%20myocardial%20infarction%20of%20self-claimed%20healthy%20subjects:%20validity%20and%20feasibility%20for%20clinical%20practice&rft.jtitle=Journal%20of%20clinical%20bioinformatics&rft.au=Mohamad,%20Nornazliya&rft.date=2015-03-13&rft.volume=5&rft.issue=1&rft.spage=3&rft.epage=3&rft.pages=3-3&rft.artnum=3&rft.issn=2043-9113&rft.eissn=2043-9113&rft_id=info:doi/10.1186/s13336-015-0018-4&rft_dat=%3Cproquest_pubme%3E1666991074%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666991074&rft_id=info:pmid/25806102&rfr_iscdi=true |