Stretchable, Weavable Coiled Carbon Nanotube/MnO2/Polymer Fiber Solid-State Supercapacitors

Fiber and yarn supercapacitors that are elastomerically deformable without performance loss are sought for such applications as power sources for wearable electronics, micro-devices and implantable medical devices. Previously reported yarn and fiber supercapacitors are expensive to fabricate, diffic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2015-03, Vol.5 (1), p.9387-9387, Article 9387
Hauptverfasser: Choi, Changsoon, Kim, Shi Hyeong, Sim, Hyeon Jun, Lee, Jae Ah, Choi, A Young, Kim, Youn Tae, Lepró, Xavier, Spinks, Geoffrey M., Baughman, Ray H., Kim, Seon Jeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9387
container_issue 1
container_start_page 9387
container_title Scientific reports
container_volume 5
creator Choi, Changsoon
Kim, Shi Hyeong
Sim, Hyeon Jun
Lee, Jae Ah
Choi, A Young
Kim, Youn Tae
Lepró, Xavier
Spinks, Geoffrey M.
Baughman, Ray H.
Kim, Seon Jeong
description Fiber and yarn supercapacitors that are elastomerically deformable without performance loss are sought for such applications as power sources for wearable electronics, micro-devices and implantable medical devices. Previously reported yarn and fiber supercapacitors are expensive to fabricate, difficult to upscale, or non-stretchable, which limits possible use. The elastomeric electrodes of the present solid-state supercapacitors are made by using giant inserted twist to coil a nylon sewing thread that is helically wrapped with a carbon nanotube sheet and then electrochemically depositing pseudocapacitive MnO 2 nanofibers. These solid-state supercapacitors decrease capacitance by less than 15% when reversibly stretched by 150% in the fiber direction and largely retain capacitance while being cyclically stretched during charge and discharge. The maximum linear and areal capacitances (based on active materials) and areal energy storage and power densities (based on overall supercapacitor dimensions) are high (5.4 mF/cm, 40.9 mF/cm 2 , 2.6 μWh/cm 2 and 66.9 μW/cm 2 , respectively), despite the engineered superelasticity of the fiber supercapacitor. Retention of supercapacitor performance during large strain (50%) elastic deformation is demonstrated for supercapacitors incorporated into the wristband of a glove.
doi_str_mv 10.1038/srep09387
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4369743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898633811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-6c67ea7aad8f4b99423535e9743770541fc00bdc2cffcc38da337293f61780a33</originalsourceid><addsrcrecordid>eNplkU1LHEEQhpugRFEP-QNhIJcoTrY_ZvrjIsjiqmBiYBNyyKHp6anRkdnpsbtnwX9vL7sum9iH6irq4a0qXoQ-EfyNYCYnwcOAFZPiAzqkuChzyijd28kP0EkITzi9kqqCqI_ogJZCCVaSQ_R3Hj1E-2iqDs6zP2CWqyyburaDOpsaX7k--2F6F8cKJt_7ezr56bqXBfhs1lYpzl3X1vk8mgjZfBzAWzMY20bnwzHab0wX4GTzH6Hfs6tf05v87v76dnp5l9uCyZhzywUYYUwtm6JSqqCsZCUoUTAhcFmQxmJc1ZbaprGWydowJqhiDSdC4lQcoYu17jBWC6gt9NGbTg--XRj_op1p9b-dvn3UD26pC8ZXU5LA142Ad88jhKgXbbDQdaYHNwZNOOdUlVjxhH75D31yo-_TeZpIJTljkpBEna4p611IBjXbZQjWK9f01rXEft7dfku-eZSAszUQUqt_AL8z8p3aK_zioRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898633811</pqid></control><display><type>article</type><title>Stretchable, Weavable Coiled Carbon Nanotube/MnO2/Polymer Fiber Solid-State Supercapacitors</title><source>Directory of Open Access Journals(OpenAccess)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><source>Nature出版集团开放获取期刊</source><creator>Choi, Changsoon ; Kim, Shi Hyeong ; Sim, Hyeon Jun ; Lee, Jae Ah ; Choi, A Young ; Kim, Youn Tae ; Lepró, Xavier ; Spinks, Geoffrey M. ; Baughman, Ray H. ; Kim, Seon Jeong</creator><creatorcontrib>Choi, Changsoon ; Kim, Shi Hyeong ; Sim, Hyeon Jun ; Lee, Jae Ah ; Choi, A Young ; Kim, Youn Tae ; Lepró, Xavier ; Spinks, Geoffrey M. ; Baughman, Ray H. ; Kim, Seon Jeong</creatorcontrib><description>Fiber and yarn supercapacitors that are elastomerically deformable without performance loss are sought for such applications as power sources for wearable electronics, micro-devices and implantable medical devices. Previously reported yarn and fiber supercapacitors are expensive to fabricate, difficult to upscale, or non-stretchable, which limits possible use. The elastomeric electrodes of the present solid-state supercapacitors are made by using giant inserted twist to coil a nylon sewing thread that is helically wrapped with a carbon nanotube sheet and then electrochemically depositing pseudocapacitive MnO 2 nanofibers. These solid-state supercapacitors decrease capacitance by less than 15% when reversibly stretched by 150% in the fiber direction and largely retain capacitance while being cyclically stretched during charge and discharge. The maximum linear and areal capacitances (based on active materials) and areal energy storage and power densities (based on overall supercapacitor dimensions) are high (5.4 mF/cm, 40.9 mF/cm 2 , 2.6 μWh/cm 2 and 66.9 μW/cm 2 , respectively), despite the engineered superelasticity of the fiber supercapacitor. Retention of supercapacitor performance during large strain (50%) elastic deformation is demonstrated for supercapacitors incorporated into the wristband of a glove.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep09387</identifier><identifier>PMID: 25797351</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/925 ; Capacitance ; Elastomers ; Energy storage ; Humanities and Social Sciences ; Medical equipment ; multidisciplinary ; Nanotubes ; Polymers ; Science</subject><ispartof>Scientific reports, 2015-03, Vol.5 (1), p.9387-9387, Article 9387</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Mar 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited. All rights reserved 2015 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-6c67ea7aad8f4b99423535e9743770541fc00bdc2cffcc38da337293f61780a33</citedby><cites>FETCH-LOGICAL-c438t-6c67ea7aad8f4b99423535e9743770541fc00bdc2cffcc38da337293f61780a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369743/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369743/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25797351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Changsoon</creatorcontrib><creatorcontrib>Kim, Shi Hyeong</creatorcontrib><creatorcontrib>Sim, Hyeon Jun</creatorcontrib><creatorcontrib>Lee, Jae Ah</creatorcontrib><creatorcontrib>Choi, A Young</creatorcontrib><creatorcontrib>Kim, Youn Tae</creatorcontrib><creatorcontrib>Lepró, Xavier</creatorcontrib><creatorcontrib>Spinks, Geoffrey M.</creatorcontrib><creatorcontrib>Baughman, Ray H.</creatorcontrib><creatorcontrib>Kim, Seon Jeong</creatorcontrib><title>Stretchable, Weavable Coiled Carbon Nanotube/MnO2/Polymer Fiber Solid-State Supercapacitors</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Fiber and yarn supercapacitors that are elastomerically deformable without performance loss are sought for such applications as power sources for wearable electronics, micro-devices and implantable medical devices. Previously reported yarn and fiber supercapacitors are expensive to fabricate, difficult to upscale, or non-stretchable, which limits possible use. The elastomeric electrodes of the present solid-state supercapacitors are made by using giant inserted twist to coil a nylon sewing thread that is helically wrapped with a carbon nanotube sheet and then electrochemically depositing pseudocapacitive MnO 2 nanofibers. These solid-state supercapacitors decrease capacitance by less than 15% when reversibly stretched by 150% in the fiber direction and largely retain capacitance while being cyclically stretched during charge and discharge. The maximum linear and areal capacitances (based on active materials) and areal energy storage and power densities (based on overall supercapacitor dimensions) are high (5.4 mF/cm, 40.9 mF/cm 2 , 2.6 μWh/cm 2 and 66.9 μW/cm 2 , respectively), despite the engineered superelasticity of the fiber supercapacitor. Retention of supercapacitor performance during large strain (50%) elastic deformation is demonstrated for supercapacitors incorporated into the wristband of a glove.</description><subject>639/301</subject><subject>639/925</subject><subject>Capacitance</subject><subject>Elastomers</subject><subject>Energy storage</subject><subject>Humanities and Social Sciences</subject><subject>Medical equipment</subject><subject>multidisciplinary</subject><subject>Nanotubes</subject><subject>Polymers</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU1LHEEQhpugRFEP-QNhIJcoTrY_ZvrjIsjiqmBiYBNyyKHp6anRkdnpsbtnwX9vL7sum9iH6irq4a0qXoQ-EfyNYCYnwcOAFZPiAzqkuChzyijd28kP0EkITzi9kqqCqI_ogJZCCVaSQ_R3Hj1E-2iqDs6zP2CWqyyburaDOpsaX7k--2F6F8cKJt_7ezr56bqXBfhs1lYpzl3X1vk8mgjZfBzAWzMY20bnwzHab0wX4GTzH6Hfs6tf05v87v76dnp5l9uCyZhzywUYYUwtm6JSqqCsZCUoUTAhcFmQxmJc1ZbaprGWydowJqhiDSdC4lQcoYu17jBWC6gt9NGbTg--XRj_op1p9b-dvn3UD26pC8ZXU5LA142Ad88jhKgXbbDQdaYHNwZNOOdUlVjxhH75D31yo-_TeZpIJTljkpBEna4p611IBjXbZQjWK9f01rXEft7dfku-eZSAszUQUqt_AL8z8p3aK_zioRg</recordid><startdate>20150323</startdate><enddate>20150323</enddate><creator>Choi, Changsoon</creator><creator>Kim, Shi Hyeong</creator><creator>Sim, Hyeon Jun</creator><creator>Lee, Jae Ah</creator><creator>Choi, A Young</creator><creator>Kim, Youn Tae</creator><creator>Lepró, Xavier</creator><creator>Spinks, Geoffrey M.</creator><creator>Baughman, Ray H.</creator><creator>Kim, Seon Jeong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150323</creationdate><title>Stretchable, Weavable Coiled Carbon Nanotube/MnO2/Polymer Fiber Solid-State Supercapacitors</title><author>Choi, Changsoon ; Kim, Shi Hyeong ; Sim, Hyeon Jun ; Lee, Jae Ah ; Choi, A Young ; Kim, Youn Tae ; Lepró, Xavier ; Spinks, Geoffrey M. ; Baughman, Ray H. ; Kim, Seon Jeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-6c67ea7aad8f4b99423535e9743770541fc00bdc2cffcc38da337293f61780a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/301</topic><topic>639/925</topic><topic>Capacitance</topic><topic>Elastomers</topic><topic>Energy storage</topic><topic>Humanities and Social Sciences</topic><topic>Medical equipment</topic><topic>multidisciplinary</topic><topic>Nanotubes</topic><topic>Polymers</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Changsoon</creatorcontrib><creatorcontrib>Kim, Shi Hyeong</creatorcontrib><creatorcontrib>Sim, Hyeon Jun</creatorcontrib><creatorcontrib>Lee, Jae Ah</creatorcontrib><creatorcontrib>Choi, A Young</creatorcontrib><creatorcontrib>Kim, Youn Tae</creatorcontrib><creatorcontrib>Lepró, Xavier</creatorcontrib><creatorcontrib>Spinks, Geoffrey M.</creatorcontrib><creatorcontrib>Baughman, Ray H.</creatorcontrib><creatorcontrib>Kim, Seon Jeong</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Changsoon</au><au>Kim, Shi Hyeong</au><au>Sim, Hyeon Jun</au><au>Lee, Jae Ah</au><au>Choi, A Young</au><au>Kim, Youn Tae</au><au>Lepró, Xavier</au><au>Spinks, Geoffrey M.</au><au>Baughman, Ray H.</au><au>Kim, Seon Jeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretchable, Weavable Coiled Carbon Nanotube/MnO2/Polymer Fiber Solid-State Supercapacitors</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-03-23</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>9387</spage><epage>9387</epage><pages>9387-9387</pages><artnum>9387</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Fiber and yarn supercapacitors that are elastomerically deformable without performance loss are sought for such applications as power sources for wearable electronics, micro-devices and implantable medical devices. Previously reported yarn and fiber supercapacitors are expensive to fabricate, difficult to upscale, or non-stretchable, which limits possible use. The elastomeric electrodes of the present solid-state supercapacitors are made by using giant inserted twist to coil a nylon sewing thread that is helically wrapped with a carbon nanotube sheet and then electrochemically depositing pseudocapacitive MnO 2 nanofibers. These solid-state supercapacitors decrease capacitance by less than 15% when reversibly stretched by 150% in the fiber direction and largely retain capacitance while being cyclically stretched during charge and discharge. The maximum linear and areal capacitances (based on active materials) and areal energy storage and power densities (based on overall supercapacitor dimensions) are high (5.4 mF/cm, 40.9 mF/cm 2 , 2.6 μWh/cm 2 and 66.9 μW/cm 2 , respectively), despite the engineered superelasticity of the fiber supercapacitor. Retention of supercapacitor performance during large strain (50%) elastic deformation is demonstrated for supercapacitors incorporated into the wristband of a glove.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25797351</pmid><doi>10.1038/srep09387</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-03, Vol.5 (1), p.9387-9387, Article 9387
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4369743
source Directory of Open Access Journals(OpenAccess); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals; Nature出版集团开放获取期刊
subjects 639/301
639/925
Capacitance
Elastomers
Energy storage
Humanities and Social Sciences
Medical equipment
multidisciplinary
Nanotubes
Polymers
Science
title Stretchable, Weavable Coiled Carbon Nanotube/MnO2/Polymer Fiber Solid-State Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretchable,%20Weavable%20Coiled%20Carbon%20Nanotube/MnO2/Polymer%20Fiber%20Solid-State%20Supercapacitors&rft.jtitle=Scientific%20reports&rft.au=Choi,%20Changsoon&rft.date=2015-03-23&rft.volume=5&rft.issue=1&rft.spage=9387&rft.epage=9387&rft.pages=9387-9387&rft.artnum=9387&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep09387&rft_dat=%3Cproquest_pubme%3E1898633811%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898633811&rft_id=info:pmid/25797351&rfr_iscdi=true