Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications

Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2015-05, Vol.50, p.332-340
Hauptverfasser: González-Sánchez, M. Isabel, Perni, Stefano, Tommasi, Giacomo, Morris, Nathanael Glyn, Hawkins, Karl, López-Cabarcos, Enrique, Prokopovich, Polina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 340
container_issue
container_start_page 332
container_title Materials Science & Engineering C
container_volume 50
creator González-Sánchez, M. Isabel
Perni, Stefano
Tommasi, Giacomo
Morris, Nathanael Glyn
Hawkins, Karl
López-Cabarcos, Enrique
Prokopovich, Polina
description Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2days. •Acrylate based hydrogels were prepared.•Hydrogels were mineralized through reaction diffusion.•Silver nanoparticles were encapsulated in different ways.•Nanoparticle adsorption after mineralization was the most effective antibacterial method.
doi_str_mv 10.1016/j.msec.2015.02.002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4368440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493115001125</els_id><sourcerecordid>1746893952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-744d0347c6c473358cec48e92f7e1e3f1624bf4fe1d75298148fa5516b9279063</originalsourceid><addsrcrecordid>eNqNkUuLFDEURoMoTjv6B1xILd1UmVflASLI4AsGXKjrkErddKdJVcok3dD_fqrpcdCNurqLe76PezkIvSS4I5iIN_tuKuA6iknfYdphTB-hDVGStZho8hhtsKaq5ZqRK_SslD3GQjFJn6Ir2ksuqFQbNH4L8Qi5me2cFptrcBGawRYYGzvXMFhXIQcbmwnqzrp8irZCszuNOW0hlmZJFVZuBXzKzZBmaLbZ-trYZYnB2RrSXJ6jJ97GAi_u5zX68fHD95vP7e3XT19u3t-2rqektpLzETMunXBcMtYrB44r0NRLIMA8EZQPnnsgo-ypVoQrb_ueiEFTqbFg1-jdpXc5DBOMbr0s22iWHCabTybZYP7czGFntuloOBOKc7wWvL4vyOnnAUo1UygOYrQzpEMxREpMtVZS_wfKhdJM9_TfqBBEa0wFW1F6QV1OpWTwD8cTbM7Szd6cpZuzdIOpWaWvoVe_v_0Q-WV5Bd5egNUYHANkU1yA2cEYMrhqxhT-1n8HMR-_gg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661990263</pqid></control><display><type>article</type><title>Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>González-Sánchez, M. Isabel ; Perni, Stefano ; Tommasi, Giacomo ; Morris, Nathanael Glyn ; Hawkins, Karl ; López-Cabarcos, Enrique ; Prokopovich, Polina</creator><creatorcontrib>González-Sánchez, M. Isabel ; Perni, Stefano ; Tommasi, Giacomo ; Morris, Nathanael Glyn ; Hawkins, Karl ; López-Cabarcos, Enrique ; Prokopovich, Polina</creatorcontrib><description>Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2days. •Acrylate based hydrogels were prepared.•Hydrogels were mineralized through reaction diffusion.•Silver nanoparticles were encapsulated in different ways.•Nanoparticle adsorption after mineralization was the most effective antibacterial method.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2015.02.002</identifier><identifier>PMID: 25746278</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adsorption ; Animals ; Anti-Bacterial Agents - pharmacology ; Antiinfectives and antibacterials ; Bone Transplantation ; Bones ; Cell Death - drug effects ; Cell Line ; Diffusion ; Elastic Modulus - drug effects ; Grafting ; Hydrogels ; Hydrogels - pharmacology ; Infections ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Methacrylates - pharmacology ; Methicillin-resistant Staphylococcus aureus (MRSA) ; Methicillin-Resistant Staphylococcus aureus - drug effects ; Mice ; Microbial Sensitivity Tests ; Nanoparticles ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Polymerization ; Rheology - drug effects ; Silver ; Silver - chemistry ; Silver - pharmacology ; Spectrophotometry, Ultraviolet ; Staphylococcus epidermidis ; Staphylococcus epidermidis - drug effects ; Surgical implants</subject><ispartof>Materials Science &amp; Engineering C, 2015-05, Vol.50, p.332-340</ispartof><rights>2015 The Authors</rights><rights>Copyright © 2015. Published by Elsevier B.V.</rights><rights>2015 The Authors. Published by Elsevier B.V. 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-744d0347c6c473358cec48e92f7e1e3f1624bf4fe1d75298148fa5516b9279063</citedby><cites>FETCH-LOGICAL-c521t-744d0347c6c473358cec48e92f7e1e3f1624bf4fe1d75298148fa5516b9279063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0928493115001125$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25746278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Sánchez, M. Isabel</creatorcontrib><creatorcontrib>Perni, Stefano</creatorcontrib><creatorcontrib>Tommasi, Giacomo</creatorcontrib><creatorcontrib>Morris, Nathanael Glyn</creatorcontrib><creatorcontrib>Hawkins, Karl</creatorcontrib><creatorcontrib>López-Cabarcos, Enrique</creatorcontrib><creatorcontrib>Prokopovich, Polina</creatorcontrib><title>Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications</title><title>Materials Science &amp; Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2days. •Acrylate based hydrogels were prepared.•Hydrogels were mineralized through reaction diffusion.•Silver nanoparticles were encapsulated in different ways.•Nanoparticle adsorption after mineralization was the most effective antibacterial method.</description><subject>Adsorption</subject><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antiinfectives and antibacterials</subject><subject>Bone Transplantation</subject><subject>Bones</subject><subject>Cell Death - drug effects</subject><subject>Cell Line</subject><subject>Diffusion</subject><subject>Elastic Modulus - drug effects</subject><subject>Grafting</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>Infections</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Methacrylates - pharmacology</subject><subject>Methicillin-resistant Staphylococcus aureus (MRSA)</subject><subject>Methicillin-Resistant Staphylococcus aureus - drug effects</subject><subject>Mice</subject><subject>Microbial Sensitivity Tests</subject><subject>Nanoparticles</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Polymerization</subject><subject>Rheology - drug effects</subject><subject>Silver</subject><subject>Silver - chemistry</subject><subject>Silver - pharmacology</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Staphylococcus epidermidis</subject><subject>Staphylococcus epidermidis - drug effects</subject><subject>Surgical implants</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuLFDEURoMoTjv6B1xILd1UmVflASLI4AsGXKjrkErddKdJVcok3dD_fqrpcdCNurqLe76PezkIvSS4I5iIN_tuKuA6iknfYdphTB-hDVGStZho8hhtsKaq5ZqRK_SslD3GQjFJn6Ir2ksuqFQbNH4L8Qi5me2cFptrcBGawRYYGzvXMFhXIQcbmwnqzrp8irZCszuNOW0hlmZJFVZuBXzKzZBmaLbZ-trYZYnB2RrSXJ6jJ97GAi_u5zX68fHD95vP7e3XT19u3t-2rqektpLzETMunXBcMtYrB44r0NRLIMA8EZQPnnsgo-ypVoQrb_ueiEFTqbFg1-jdpXc5DBOMbr0s22iWHCabTybZYP7czGFntuloOBOKc7wWvL4vyOnnAUo1UygOYrQzpEMxREpMtVZS_wfKhdJM9_TfqBBEa0wFW1F6QV1OpWTwD8cTbM7Szd6cpZuzdIOpWaWvoVe_v_0Q-WV5Bd5egNUYHANkU1yA2cEYMrhqxhT-1n8HMR-_gg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>González-Sánchez, M. Isabel</creator><creator>Perni, Stefano</creator><creator>Tommasi, Giacomo</creator><creator>Morris, Nathanael Glyn</creator><creator>Hawkins, Karl</creator><creator>López-Cabarcos, Enrique</creator><creator>Prokopovich, Polina</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20150501</creationdate><title>Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications</title><author>González-Sánchez, M. Isabel ; Perni, Stefano ; Tommasi, Giacomo ; Morris, Nathanael Glyn ; Hawkins, Karl ; López-Cabarcos, Enrique ; Prokopovich, Polina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-744d0347c6c473358cec48e92f7e1e3f1624bf4fe1d75298148fa5516b9279063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adsorption</topic><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antiinfectives and antibacterials</topic><topic>Bone Transplantation</topic><topic>Bones</topic><topic>Cell Death - drug effects</topic><topic>Cell Line</topic><topic>Diffusion</topic><topic>Elastic Modulus - drug effects</topic><topic>Grafting</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>Infections</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Methacrylates - pharmacology</topic><topic>Methicillin-resistant Staphylococcus aureus (MRSA)</topic><topic>Methicillin-Resistant Staphylococcus aureus - drug effects</topic><topic>Mice</topic><topic>Microbial Sensitivity Tests</topic><topic>Nanoparticles</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Polymerization</topic><topic>Rheology - drug effects</topic><topic>Silver</topic><topic>Silver - chemistry</topic><topic>Silver - pharmacology</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Staphylococcus epidermidis</topic><topic>Staphylococcus epidermidis - drug effects</topic><topic>Surgical implants</topic><toplevel>online_resources</toplevel><creatorcontrib>González-Sánchez, M. Isabel</creatorcontrib><creatorcontrib>Perni, Stefano</creatorcontrib><creatorcontrib>Tommasi, Giacomo</creatorcontrib><creatorcontrib>Morris, Nathanael Glyn</creatorcontrib><creatorcontrib>Hawkins, Karl</creatorcontrib><creatorcontrib>López-Cabarcos, Enrique</creatorcontrib><creatorcontrib>Prokopovich, Polina</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials Science &amp; Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Sánchez, M. Isabel</au><au>Perni, Stefano</au><au>Tommasi, Giacomo</au><au>Morris, Nathanael Glyn</au><au>Hawkins, Karl</au><au>López-Cabarcos, Enrique</au><au>Prokopovich, Polina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications</atitle><jtitle>Materials Science &amp; Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>50</volume><spage>332</spage><epage>340</epage><pages>332-340</pages><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2days. •Acrylate based hydrogels were prepared.•Hydrogels were mineralized through reaction diffusion.•Silver nanoparticles were encapsulated in different ways.•Nanoparticle adsorption after mineralization was the most effective antibacterial method.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25746278</pmid><doi>10.1016/j.msec.2015.02.002</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0928-4931
ispartof Materials Science & Engineering C, 2015-05, Vol.50, p.332-340
issn 0928-4931
1873-0191
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4368440
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adsorption
Animals
Anti-Bacterial Agents - pharmacology
Antiinfectives and antibacterials
Bone Transplantation
Bones
Cell Death - drug effects
Cell Line
Diffusion
Elastic Modulus - drug effects
Grafting
Hydrogels
Hydrogels - pharmacology
Infections
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
Methacrylates - pharmacology
Methicillin-resistant Staphylococcus aureus (MRSA)
Methicillin-Resistant Staphylococcus aureus - drug effects
Mice
Microbial Sensitivity Tests
Nanoparticles
Osteoblasts - cytology
Osteoblasts - drug effects
Polymerization
Rheology - drug effects
Silver
Silver - chemistry
Silver - pharmacology
Spectrophotometry, Ultraviolet
Staphylococcus epidermidis
Staphylococcus epidermidis - drug effects
Surgical implants
title Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silver%20nanoparticle%20based%20antibacterial%20methacrylate%20hydrogels%20potential%20for%20bone%20graft%20applications&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Gonz%C3%A1lez-S%C3%A1nchez,%20M.%20Isabel&rft.date=2015-05-01&rft.volume=50&rft.spage=332&rft.epage=340&rft.pages=332-340&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2015.02.002&rft_dat=%3Cproquest_pubme%3E1746893952%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661990263&rft_id=info:pmid/25746278&rft_els_id=S0928493115001125&rfr_iscdi=true