Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications
Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the...
Gespeichert in:
Veröffentlicht in: | Materials Science & Engineering C 2015-05, Vol.50, p.332-340 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 340 |
---|---|
container_issue | |
container_start_page | 332 |
container_title | Materials Science & Engineering C |
container_volume | 50 |
creator | González-Sánchez, M. Isabel Perni, Stefano Tommasi, Giacomo Morris, Nathanael Glyn Hawkins, Karl López-Cabarcos, Enrique Prokopovich, Polina |
description | Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2days.
•Acrylate based hydrogels were prepared.•Hydrogels were mineralized through reaction diffusion.•Silver nanoparticles were encapsulated in different ways.•Nanoparticle adsorption after mineralization was the most effective antibacterial method. |
doi_str_mv | 10.1016/j.msec.2015.02.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4368440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493115001125</els_id><sourcerecordid>1746893952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-744d0347c6c473358cec48e92f7e1e3f1624bf4fe1d75298148fa5516b9279063</originalsourceid><addsrcrecordid>eNqNkUuLFDEURoMoTjv6B1xILd1UmVflASLI4AsGXKjrkErddKdJVcok3dD_fqrpcdCNurqLe76PezkIvSS4I5iIN_tuKuA6iknfYdphTB-hDVGStZho8hhtsKaq5ZqRK_SslD3GQjFJn6Ir2ksuqFQbNH4L8Qi5me2cFptrcBGawRYYGzvXMFhXIQcbmwnqzrp8irZCszuNOW0hlmZJFVZuBXzKzZBmaLbZ-trYZYnB2RrSXJ6jJ97GAi_u5zX68fHD95vP7e3XT19u3t-2rqektpLzETMunXBcMtYrB44r0NRLIMA8EZQPnnsgo-ypVoQrb_ueiEFTqbFg1-jdpXc5DBOMbr0s22iWHCabTybZYP7czGFntuloOBOKc7wWvL4vyOnnAUo1UygOYrQzpEMxREpMtVZS_wfKhdJM9_TfqBBEa0wFW1F6QV1OpWTwD8cTbM7Szd6cpZuzdIOpWaWvoVe_v_0Q-WV5Bd5egNUYHANkU1yA2cEYMrhqxhT-1n8HMR-_gg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661990263</pqid></control><display><type>article</type><title>Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>González-Sánchez, M. Isabel ; Perni, Stefano ; Tommasi, Giacomo ; Morris, Nathanael Glyn ; Hawkins, Karl ; López-Cabarcos, Enrique ; Prokopovich, Polina</creator><creatorcontrib>González-Sánchez, M. Isabel ; Perni, Stefano ; Tommasi, Giacomo ; Morris, Nathanael Glyn ; Hawkins, Karl ; López-Cabarcos, Enrique ; Prokopovich, Polina</creatorcontrib><description>Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2days.
•Acrylate based hydrogels were prepared.•Hydrogels were mineralized through reaction diffusion.•Silver nanoparticles were encapsulated in different ways.•Nanoparticle adsorption after mineralization was the most effective antibacterial method.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2015.02.002</identifier><identifier>PMID: 25746278</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adsorption ; Animals ; Anti-Bacterial Agents - pharmacology ; Antiinfectives and antibacterials ; Bone Transplantation ; Bones ; Cell Death - drug effects ; Cell Line ; Diffusion ; Elastic Modulus - drug effects ; Grafting ; Hydrogels ; Hydrogels - pharmacology ; Infections ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Methacrylates - pharmacology ; Methicillin-resistant Staphylococcus aureus (MRSA) ; Methicillin-Resistant Staphylococcus aureus - drug effects ; Mice ; Microbial Sensitivity Tests ; Nanoparticles ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Polymerization ; Rheology - drug effects ; Silver ; Silver - chemistry ; Silver - pharmacology ; Spectrophotometry, Ultraviolet ; Staphylococcus epidermidis ; Staphylococcus epidermidis - drug effects ; Surgical implants</subject><ispartof>Materials Science & Engineering C, 2015-05, Vol.50, p.332-340</ispartof><rights>2015 The Authors</rights><rights>Copyright © 2015. Published by Elsevier B.V.</rights><rights>2015 The Authors. Published by Elsevier B.V. 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-744d0347c6c473358cec48e92f7e1e3f1624bf4fe1d75298148fa5516b9279063</citedby><cites>FETCH-LOGICAL-c521t-744d0347c6c473358cec48e92f7e1e3f1624bf4fe1d75298148fa5516b9279063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0928493115001125$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25746278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Sánchez, M. Isabel</creatorcontrib><creatorcontrib>Perni, Stefano</creatorcontrib><creatorcontrib>Tommasi, Giacomo</creatorcontrib><creatorcontrib>Morris, Nathanael Glyn</creatorcontrib><creatorcontrib>Hawkins, Karl</creatorcontrib><creatorcontrib>López-Cabarcos, Enrique</creatorcontrib><creatorcontrib>Prokopovich, Polina</creatorcontrib><title>Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications</title><title>Materials Science & Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2days.
•Acrylate based hydrogels were prepared.•Hydrogels were mineralized through reaction diffusion.•Silver nanoparticles were encapsulated in different ways.•Nanoparticle adsorption after mineralization was the most effective antibacterial method.</description><subject>Adsorption</subject><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antiinfectives and antibacterials</subject><subject>Bone Transplantation</subject><subject>Bones</subject><subject>Cell Death - drug effects</subject><subject>Cell Line</subject><subject>Diffusion</subject><subject>Elastic Modulus - drug effects</subject><subject>Grafting</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>Infections</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Methacrylates - pharmacology</subject><subject>Methicillin-resistant Staphylococcus aureus (MRSA)</subject><subject>Methicillin-Resistant Staphylococcus aureus - drug effects</subject><subject>Mice</subject><subject>Microbial Sensitivity Tests</subject><subject>Nanoparticles</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Polymerization</subject><subject>Rheology - drug effects</subject><subject>Silver</subject><subject>Silver - chemistry</subject><subject>Silver - pharmacology</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Staphylococcus epidermidis</subject><subject>Staphylococcus epidermidis - drug effects</subject><subject>Surgical implants</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuLFDEURoMoTjv6B1xILd1UmVflASLI4AsGXKjrkErddKdJVcok3dD_fqrpcdCNurqLe76PezkIvSS4I5iIN_tuKuA6iknfYdphTB-hDVGStZho8hhtsKaq5ZqRK_SslD3GQjFJn6Ir2ksuqFQbNH4L8Qi5me2cFptrcBGawRYYGzvXMFhXIQcbmwnqzrp8irZCszuNOW0hlmZJFVZuBXzKzZBmaLbZ-trYZYnB2RrSXJ6jJ97GAi_u5zX68fHD95vP7e3XT19u3t-2rqektpLzETMunXBcMtYrB44r0NRLIMA8EZQPnnsgo-ypVoQrb_ueiEFTqbFg1-jdpXc5DBOMbr0s22iWHCabTybZYP7czGFntuloOBOKc7wWvL4vyOnnAUo1UygOYrQzpEMxREpMtVZS_wfKhdJM9_TfqBBEa0wFW1F6QV1OpWTwD8cTbM7Szd6cpZuzdIOpWaWvoVe_v_0Q-WV5Bd5egNUYHANkU1yA2cEYMrhqxhT-1n8HMR-_gg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>González-Sánchez, M. Isabel</creator><creator>Perni, Stefano</creator><creator>Tommasi, Giacomo</creator><creator>Morris, Nathanael Glyn</creator><creator>Hawkins, Karl</creator><creator>López-Cabarcos, Enrique</creator><creator>Prokopovich, Polina</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20150501</creationdate><title>Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications</title><author>González-Sánchez, M. Isabel ; Perni, Stefano ; Tommasi, Giacomo ; Morris, Nathanael Glyn ; Hawkins, Karl ; López-Cabarcos, Enrique ; Prokopovich, Polina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-744d0347c6c473358cec48e92f7e1e3f1624bf4fe1d75298148fa5516b9279063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adsorption</topic><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antiinfectives and antibacterials</topic><topic>Bone Transplantation</topic><topic>Bones</topic><topic>Cell Death - drug effects</topic><topic>Cell Line</topic><topic>Diffusion</topic><topic>Elastic Modulus - drug effects</topic><topic>Grafting</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>Infections</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Methacrylates - pharmacology</topic><topic>Methicillin-resistant Staphylococcus aureus (MRSA)</topic><topic>Methicillin-Resistant Staphylococcus aureus - drug effects</topic><topic>Mice</topic><topic>Microbial Sensitivity Tests</topic><topic>Nanoparticles</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Polymerization</topic><topic>Rheology - drug effects</topic><topic>Silver</topic><topic>Silver - chemistry</topic><topic>Silver - pharmacology</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Staphylococcus epidermidis</topic><topic>Staphylococcus epidermidis - drug effects</topic><topic>Surgical implants</topic><toplevel>online_resources</toplevel><creatorcontrib>González-Sánchez, M. Isabel</creatorcontrib><creatorcontrib>Perni, Stefano</creatorcontrib><creatorcontrib>Tommasi, Giacomo</creatorcontrib><creatorcontrib>Morris, Nathanael Glyn</creatorcontrib><creatorcontrib>Hawkins, Karl</creatorcontrib><creatorcontrib>López-Cabarcos, Enrique</creatorcontrib><creatorcontrib>Prokopovich, Polina</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials Science & Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Sánchez, M. Isabel</au><au>Perni, Stefano</au><au>Tommasi, Giacomo</au><au>Morris, Nathanael Glyn</au><au>Hawkins, Karl</au><au>López-Cabarcos, Enrique</au><au>Prokopovich, Polina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications</atitle><jtitle>Materials Science & Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>50</volume><spage>332</spage><epage>340</epage><pages>332-340</pages><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2days.
•Acrylate based hydrogels were prepared.•Hydrogels were mineralized through reaction diffusion.•Silver nanoparticles were encapsulated in different ways.•Nanoparticle adsorption after mineralization was the most effective antibacterial method.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25746278</pmid><doi>10.1016/j.msec.2015.02.002</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-4931 |
ispartof | Materials Science & Engineering C, 2015-05, Vol.50, p.332-340 |
issn | 0928-4931 1873-0191 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4368440 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adsorption Animals Anti-Bacterial Agents - pharmacology Antiinfectives and antibacterials Bone Transplantation Bones Cell Death - drug effects Cell Line Diffusion Elastic Modulus - drug effects Grafting Hydrogels Hydrogels - pharmacology Infections Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure Methacrylates - pharmacology Methicillin-resistant Staphylococcus aureus (MRSA) Methicillin-Resistant Staphylococcus aureus - drug effects Mice Microbial Sensitivity Tests Nanoparticles Osteoblasts - cytology Osteoblasts - drug effects Polymerization Rheology - drug effects Silver Silver - chemistry Silver - pharmacology Spectrophotometry, Ultraviolet Staphylococcus epidermidis Staphylococcus epidermidis - drug effects Surgical implants |
title | Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silver%20nanoparticle%20based%20antibacterial%20methacrylate%20hydrogels%20potential%20for%20bone%20graft%20applications&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Gonz%C3%A1lez-S%C3%A1nchez,%20M.%20Isabel&rft.date=2015-05-01&rft.volume=50&rft.spage=332&rft.epage=340&rft.pages=332-340&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2015.02.002&rft_dat=%3Cproquest_pubme%3E1746893952%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661990263&rft_id=info:pmid/25746278&rft_els_id=S0928493115001125&rfr_iscdi=true |