Candesartan stimulates reparative angiogenesis in ischemic retinopathy model: role of hemeoxygenase-1 (HO-1)
Ischemic diseases such as stroke and proliferative retinopathy are characterized by hypoxia-driven release of angiogenic factors such as vascular endothelial growth factor (VEGF). However, revascularization of the ischemic areas is inadequate, resulting in impaired neuro-vascular function. We aim to...
Gespeichert in:
Veröffentlicht in: | Angiogenesis (London) 2015-04, Vol.18 (2), p.137-150 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | 2 |
container_start_page | 137 |
container_title | Angiogenesis (London) |
container_volume | 18 |
creator | Shanab, Ahmed Y. Elshaer, Sally L. El-Azab, Mona F. Soliman, Sahar Sabbineni, Harika Matragoon, Suraporn Fagan, Susan C. El-Remessy, Azza B. |
description | Ischemic diseases such as stroke and proliferative retinopathy are characterized by hypoxia-driven release of angiogenic factors such as vascular endothelial growth factor (VEGF). However, revascularization of the ischemic areas is inadequate, resulting in impaired neuro-vascular function. We aim to examine the vascular protective effects of candesartan, an angiotensin receptor blocker, in an ischemic retinopathy mouse model. Vascular density, number of tip cells, and perfusions of capillaries were assessed. Activation of Muller glial cells and levels of peroxynitrite, VEGF, VEGFR2, inducible nitric oxide synthase, hemeoxygenase-1 (HO-1) were assessed. Proangiogenic effects of candesartan were examined in human endothelial cells (EC) that were cultured in normoxia or hypoxia and transduced with siRNA against HO-1. Candesartan (1 mg/kg) and (10 mg/kg) decreased hypoxia-induced neovascularization by 67 and 70 %, respectively. Candesartan (10 mg/kg) significantly stimulated the number of tip cells and physiological revascularization of the central retina (45 %) compared with untreated pups. The effects of candesartan coincided with reduction of hypoxia-induced Muller glial activation, iNOS expression and restoration of HO-1 expression with no significant change in VEGF levels. In vitro, silencing HO-1 expression blunted the ability of candesartan to induce VEGF expression under normoxia and VEGFR2 activation and angiogenic response under both normoxia and hypoxia. These findings suggest that candesartan improved reparative angiogenesis and hence prevented pathological angiogenesis by modulating HO-1 and iNOS levels in ischemic retinopathy. HO-1 is required for VEGFR2 activation and proangiogenic action of candesartan in EC. Candesartan, an FDA-approved drug, could be repurposed as a potential therapeutic agent for the treatment of ischemic diseases. |
doi_str_mv | 10.1007/s10456-014-9451-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4366359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3626998791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-c8b3d134d3d56c43a7b3b7338f1431be2b7a248ded14a8aae0d3ffc9cd1ef73e3</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS1ERZeFH8AFWeJSDi6e2LETDkjVCihSpV7gbDnxZNdVYi92UrH_vi5bqoLEaaSZb97M0yPkDfBz4Fx_yMBlrRgHyVpZA5PPyApqLZiuePucrHirWqZazU_Jy5xvOC-NRr4gp1UtKy4bWJFxY4PDbNNsA82zn5bRzphpwr1Ndva3SG3Y-rjFgNln6gP1ud_h5PvCzD7EvZ13BzpFh-NHmuKINA60ABh_HcqWzciAnl1eM3j_ipwMdsz4-qGuyY8vn79vLtnV9ddvm4sr1iuuZtY3nXAgpBOuVr0UVnei00I0A0gBHVadtpVsHDqQtrEWuRPD0Le9Axy0QLEmn466-6Wb0PUY5mRHs09-sulgovXm70nwO7ONt0YKpUTdFoGzB4EUfy6YZzMV1ziONmBcsgGlpNZS8aag7_5Bb-KSQrH3mwIOvIZCwZHqU8w54fD4DHBzn6U5ZmlKluY-y_LKmrx96uJx4094BaiOQC6jsMX05PR_Ve8AA8asEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664101051</pqid></control><display><type>article</type><title>Candesartan stimulates reparative angiogenesis in ischemic retinopathy model: role of hemeoxygenase-1 (HO-1)</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Shanab, Ahmed Y. ; Elshaer, Sally L. ; El-Azab, Mona F. ; Soliman, Sahar ; Sabbineni, Harika ; Matragoon, Suraporn ; Fagan, Susan C. ; El-Remessy, Azza B.</creator><creatorcontrib>Shanab, Ahmed Y. ; Elshaer, Sally L. ; El-Azab, Mona F. ; Soliman, Sahar ; Sabbineni, Harika ; Matragoon, Suraporn ; Fagan, Susan C. ; El-Remessy, Azza B.</creatorcontrib><description>Ischemic diseases such as stroke and proliferative retinopathy are characterized by hypoxia-driven release of angiogenic factors such as vascular endothelial growth factor (VEGF). However, revascularization of the ischemic areas is inadequate, resulting in impaired neuro-vascular function. We aim to examine the vascular protective effects of candesartan, an angiotensin receptor blocker, in an ischemic retinopathy mouse model. Vascular density, number of tip cells, and perfusions of capillaries were assessed. Activation of Muller glial cells and levels of peroxynitrite, VEGF, VEGFR2, inducible nitric oxide synthase, hemeoxygenase-1 (HO-1) were assessed. Proangiogenic effects of candesartan were examined in human endothelial cells (EC) that were cultured in normoxia or hypoxia and transduced with siRNA against HO-1. Candesartan (1 mg/kg) and (10 mg/kg) decreased hypoxia-induced neovascularization by 67 and 70 %, respectively. Candesartan (10 mg/kg) significantly stimulated the number of tip cells and physiological revascularization of the central retina (45 %) compared with untreated pups. The effects of candesartan coincided with reduction of hypoxia-induced Muller glial activation, iNOS expression and restoration of HO-1 expression with no significant change in VEGF levels. In vitro, silencing HO-1 expression blunted the ability of candesartan to induce VEGF expression under normoxia and VEGFR2 activation and angiogenic response under both normoxia and hypoxia. These findings suggest that candesartan improved reparative angiogenesis and hence prevented pathological angiogenesis by modulating HO-1 and iNOS levels in ischemic retinopathy. HO-1 is required for VEGFR2 activation and proangiogenic action of candesartan in EC. Candesartan, an FDA-approved drug, could be repurposed as a potential therapeutic agent for the treatment of ischemic diseases.</description><identifier>ISSN: 0969-6970</identifier><identifier>EISSN: 1573-7209</identifier><identifier>DOI: 10.1007/s10456-014-9451-4</identifier><identifier>PMID: 25420481</identifier><identifier>CODEN: AGIOFT</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Angiotensin II Type 1 Receptor Blockers - pharmacology ; Animals ; Benzimidazoles - pharmacology ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cardiology ; Cell Biology ; Gene Silencing ; Heme Oxygenase-1 - genetics ; Heme Oxygenase-1 - metabolism ; Ischemia - enzymology ; Ischemia - physiopathology ; Mice ; Mice, Inbred C57BL ; Neovascularization, Pathologic - drug therapy ; Nitric Oxide Synthase Type II - metabolism ; Oncology ; Ophthalmology ; Original Paper ; Oxidative Stress ; Retinal Diseases - enzymology ; Retinal Diseases - physiopathology ; Tetrazoles - pharmacology ; Vascular Endothelial Growth Factor A - metabolism ; Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><ispartof>Angiogenesis (London), 2015-04, Vol.18 (2), p.137-150</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Springer Science+Business Media Dordrecht 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-c8b3d134d3d56c43a7b3b7338f1431be2b7a248ded14a8aae0d3ffc9cd1ef73e3</citedby><cites>FETCH-LOGICAL-c606t-c8b3d134d3d56c43a7b3b7338f1431be2b7a248ded14a8aae0d3ffc9cd1ef73e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10456-014-9451-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10456-014-9451-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25420481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shanab, Ahmed Y.</creatorcontrib><creatorcontrib>Elshaer, Sally L.</creatorcontrib><creatorcontrib>El-Azab, Mona F.</creatorcontrib><creatorcontrib>Soliman, Sahar</creatorcontrib><creatorcontrib>Sabbineni, Harika</creatorcontrib><creatorcontrib>Matragoon, Suraporn</creatorcontrib><creatorcontrib>Fagan, Susan C.</creatorcontrib><creatorcontrib>El-Remessy, Azza B.</creatorcontrib><title>Candesartan stimulates reparative angiogenesis in ischemic retinopathy model: role of hemeoxygenase-1 (HO-1)</title><title>Angiogenesis (London)</title><addtitle>Angiogenesis</addtitle><addtitle>Angiogenesis</addtitle><description>Ischemic diseases such as stroke and proliferative retinopathy are characterized by hypoxia-driven release of angiogenic factors such as vascular endothelial growth factor (VEGF). However, revascularization of the ischemic areas is inadequate, resulting in impaired neuro-vascular function. We aim to examine the vascular protective effects of candesartan, an angiotensin receptor blocker, in an ischemic retinopathy mouse model. Vascular density, number of tip cells, and perfusions of capillaries were assessed. Activation of Muller glial cells and levels of peroxynitrite, VEGF, VEGFR2, inducible nitric oxide synthase, hemeoxygenase-1 (HO-1) were assessed. Proangiogenic effects of candesartan were examined in human endothelial cells (EC) that were cultured in normoxia or hypoxia and transduced with siRNA against HO-1. Candesartan (1 mg/kg) and (10 mg/kg) decreased hypoxia-induced neovascularization by 67 and 70 %, respectively. Candesartan (10 mg/kg) significantly stimulated the number of tip cells and physiological revascularization of the central retina (45 %) compared with untreated pups. The effects of candesartan coincided with reduction of hypoxia-induced Muller glial activation, iNOS expression and restoration of HO-1 expression with no significant change in VEGF levels. In vitro, silencing HO-1 expression blunted the ability of candesartan to induce VEGF expression under normoxia and VEGFR2 activation and angiogenic response under both normoxia and hypoxia. These findings suggest that candesartan improved reparative angiogenesis and hence prevented pathological angiogenesis by modulating HO-1 and iNOS levels in ischemic retinopathy. HO-1 is required for VEGFR2 activation and proangiogenic action of candesartan in EC. Candesartan, an FDA-approved drug, could be repurposed as a potential therapeutic agent for the treatment of ischemic diseases.</description><subject>Angiotensin II Type 1 Receptor Blockers - pharmacology</subject><subject>Animals</subject><subject>Benzimidazoles - pharmacology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cardiology</subject><subject>Cell Biology</subject><subject>Gene Silencing</subject><subject>Heme Oxygenase-1 - genetics</subject><subject>Heme Oxygenase-1 - metabolism</subject><subject>Ischemia - enzymology</subject><subject>Ischemia - physiopathology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neovascularization, Pathologic - drug therapy</subject><subject>Nitric Oxide Synthase Type II - metabolism</subject><subject>Oncology</subject><subject>Ophthalmology</subject><subject>Original Paper</subject><subject>Oxidative Stress</subject><subject>Retinal Diseases - enzymology</subject><subject>Retinal Diseases - physiopathology</subject><subject>Tetrazoles - pharmacology</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><issn>0969-6970</issn><issn>1573-7209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kUFv1DAQhS1ERZeFH8AFWeJSDi6e2LETDkjVCihSpV7gbDnxZNdVYi92UrH_vi5bqoLEaaSZb97M0yPkDfBz4Fx_yMBlrRgHyVpZA5PPyApqLZiuePucrHirWqZazU_Jy5xvOC-NRr4gp1UtKy4bWJFxY4PDbNNsA82zn5bRzphpwr1Ndva3SG3Y-rjFgNln6gP1ud_h5PvCzD7EvZ13BzpFh-NHmuKINA60ABh_HcqWzciAnl1eM3j_ipwMdsz4-qGuyY8vn79vLtnV9ddvm4sr1iuuZtY3nXAgpBOuVr0UVnei00I0A0gBHVadtpVsHDqQtrEWuRPD0Le9Axy0QLEmn466-6Wb0PUY5mRHs09-sulgovXm70nwO7ONt0YKpUTdFoGzB4EUfy6YZzMV1ziONmBcsgGlpNZS8aag7_5Bb-KSQrH3mwIOvIZCwZHqU8w54fD4DHBzn6U5ZmlKluY-y_LKmrx96uJx4094BaiOQC6jsMX05PR_Ve8AA8asEA</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Shanab, Ahmed Y.</creator><creator>Elshaer, Sally L.</creator><creator>El-Azab, Mona F.</creator><creator>Soliman, Sahar</creator><creator>Sabbineni, Harika</creator><creator>Matragoon, Suraporn</creator><creator>Fagan, Susan C.</creator><creator>El-Remessy, Azza B.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150401</creationdate><title>Candesartan stimulates reparative angiogenesis in ischemic retinopathy model: role of hemeoxygenase-1 (HO-1)</title><author>Shanab, Ahmed Y. ; Elshaer, Sally L. ; El-Azab, Mona F. ; Soliman, Sahar ; Sabbineni, Harika ; Matragoon, Suraporn ; Fagan, Susan C. ; El-Remessy, Azza B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-c8b3d134d3d56c43a7b3b7338f1431be2b7a248ded14a8aae0d3ffc9cd1ef73e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Angiotensin II Type 1 Receptor Blockers - pharmacology</topic><topic>Animals</topic><topic>Benzimidazoles - pharmacology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cardiology</topic><topic>Cell Biology</topic><topic>Gene Silencing</topic><topic>Heme Oxygenase-1 - genetics</topic><topic>Heme Oxygenase-1 - metabolism</topic><topic>Ischemia - enzymology</topic><topic>Ischemia - physiopathology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neovascularization, Pathologic - drug therapy</topic><topic>Nitric Oxide Synthase Type II - metabolism</topic><topic>Oncology</topic><topic>Ophthalmology</topic><topic>Original Paper</topic><topic>Oxidative Stress</topic><topic>Retinal Diseases - enzymology</topic><topic>Retinal Diseases - physiopathology</topic><topic>Tetrazoles - pharmacology</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shanab, Ahmed Y.</creatorcontrib><creatorcontrib>Elshaer, Sally L.</creatorcontrib><creatorcontrib>El-Azab, Mona F.</creatorcontrib><creatorcontrib>Soliman, Sahar</creatorcontrib><creatorcontrib>Sabbineni, Harika</creatorcontrib><creatorcontrib>Matragoon, Suraporn</creatorcontrib><creatorcontrib>Fagan, Susan C.</creatorcontrib><creatorcontrib>El-Remessy, Azza B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angiogenesis (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shanab, Ahmed Y.</au><au>Elshaer, Sally L.</au><au>El-Azab, Mona F.</au><au>Soliman, Sahar</au><au>Sabbineni, Harika</au><au>Matragoon, Suraporn</au><au>Fagan, Susan C.</au><au>El-Remessy, Azza B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Candesartan stimulates reparative angiogenesis in ischemic retinopathy model: role of hemeoxygenase-1 (HO-1)</atitle><jtitle>Angiogenesis (London)</jtitle><stitle>Angiogenesis</stitle><addtitle>Angiogenesis</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>18</volume><issue>2</issue><spage>137</spage><epage>150</epage><pages>137-150</pages><issn>0969-6970</issn><eissn>1573-7209</eissn><coden>AGIOFT</coden><abstract>Ischemic diseases such as stroke and proliferative retinopathy are characterized by hypoxia-driven release of angiogenic factors such as vascular endothelial growth factor (VEGF). However, revascularization of the ischemic areas is inadequate, resulting in impaired neuro-vascular function. We aim to examine the vascular protective effects of candesartan, an angiotensin receptor blocker, in an ischemic retinopathy mouse model. Vascular density, number of tip cells, and perfusions of capillaries were assessed. Activation of Muller glial cells and levels of peroxynitrite, VEGF, VEGFR2, inducible nitric oxide synthase, hemeoxygenase-1 (HO-1) were assessed. Proangiogenic effects of candesartan were examined in human endothelial cells (EC) that were cultured in normoxia or hypoxia and transduced with siRNA against HO-1. Candesartan (1 mg/kg) and (10 mg/kg) decreased hypoxia-induced neovascularization by 67 and 70 %, respectively. Candesartan (10 mg/kg) significantly stimulated the number of tip cells and physiological revascularization of the central retina (45 %) compared with untreated pups. The effects of candesartan coincided with reduction of hypoxia-induced Muller glial activation, iNOS expression and restoration of HO-1 expression with no significant change in VEGF levels. In vitro, silencing HO-1 expression blunted the ability of candesartan to induce VEGF expression under normoxia and VEGFR2 activation and angiogenic response under both normoxia and hypoxia. These findings suggest that candesartan improved reparative angiogenesis and hence prevented pathological angiogenesis by modulating HO-1 and iNOS levels in ischemic retinopathy. HO-1 is required for VEGFR2 activation and proangiogenic action of candesartan in EC. Candesartan, an FDA-approved drug, could be repurposed as a potential therapeutic agent for the treatment of ischemic diseases.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>25420481</pmid><doi>10.1007/s10456-014-9451-4</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-6970 |
ispartof | Angiogenesis (London), 2015-04, Vol.18 (2), p.137-150 |
issn | 0969-6970 1573-7209 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4366359 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Angiotensin II Type 1 Receptor Blockers - pharmacology Animals Benzimidazoles - pharmacology Biomedical and Life Sciences Biomedicine Cancer Research Cardiology Cell Biology Gene Silencing Heme Oxygenase-1 - genetics Heme Oxygenase-1 - metabolism Ischemia - enzymology Ischemia - physiopathology Mice Mice, Inbred C57BL Neovascularization, Pathologic - drug therapy Nitric Oxide Synthase Type II - metabolism Oncology Ophthalmology Original Paper Oxidative Stress Retinal Diseases - enzymology Retinal Diseases - physiopathology Tetrazoles - pharmacology Vascular Endothelial Growth Factor A - metabolism Vascular Endothelial Growth Factor Receptor-2 - metabolism |
title | Candesartan stimulates reparative angiogenesis in ischemic retinopathy model: role of hemeoxygenase-1 (HO-1) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Candesartan%20stimulates%20reparative%20angiogenesis%20in%20ischemic%20retinopathy%20model:%20role%20of%20hemeoxygenase-1%20(HO-1)&rft.jtitle=Angiogenesis%20(London)&rft.au=Shanab,%20Ahmed%20Y.&rft.date=2015-04-01&rft.volume=18&rft.issue=2&rft.spage=137&rft.epage=150&rft.pages=137-150&rft.issn=0969-6970&rft.eissn=1573-7209&rft.coden=AGIOFT&rft_id=info:doi/10.1007/s10456-014-9451-4&rft_dat=%3Cproquest_pubme%3E3626998791%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664101051&rft_id=info:pmid/25420481&rfr_iscdi=true |