Predictive Inference Using Latent Variables with Covariates

Plausible values (PVs) are a standard multiple imputation tool for analysis of large education survey data, which measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally generated PV methodology and find it applies with gre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychometrika 2015-09, Vol.80 (3), p.727-747
Hauptverfasser: Schofield, Lynne Steuerle, Junker, Brian, Taylor, Lowell J., Black, Dan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 747
container_issue 3
container_start_page 727
container_title Psychometrika
container_volume 80
creator Schofield, Lynne Steuerle
Junker, Brian
Taylor, Lowell J.
Black, Dan A.
description Plausible values (PVs) are a standard multiple imputation tool for analysis of large education survey data, which measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts’ model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations model of Schofield (Modeling measurement error when using cognitive test scores in social science research. Doctoral dissertation. Department of Statistics and Heinz College of Public Policy. Pittsburgh, PA: Carnegie Mellon University, 2008 ).
doi_str_mv 10.1007/s11336-014-9415-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4364920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1708902952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-a5f99fdf1c68ccc2a0717f12c597d429b57828a9965e2ff4235c9150c49361fb3</originalsourceid><addsrcrecordid>eNqNkU1LJDEQhoO46Dj6A7xIgxcvvVuVj04HQZDBLxhYD-o1ZDLJGOnp1qRnRH-9mR1XXEHYUyD11JtKPYTsI_xEAPkrITJWlYC8VBxF-bpBBlhXUIKqYZMMABgrGVK2TXZSegAAhXW9RbapoAwrKgfk-Dq6abB9WLriqvUuuta64jaFdlaMTe_avrgzMZhJ41LxHPr7YtQtVxe9S7vkhzdNcnvv55Dcnp_djC7L8e-Lq9HpuLQCWF8a4ZXyU4-2qq211IBE6ZFaoeSUUzURsqa1UaoSjnrPKRNWoQDLFavQT9iQnKxzHxeTuZvaPFQ0jX6MYW7ii-5M0P9W2nCvZ91Sc1ZxRSEHHL0HxO5p4VKv5yFZ1zSmdd0iaZRIpeQCq_9AoVZAVV7gkBx-QR-6RWzzJv5QnGcVPFO4pmzsUorOf8yNoFcW9dqizhb1yqJ-zT0Hnz_80fFXWwboGki51M5c_PT0t6lvLG6nMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708441864</pqid></control><display><type>article</type><title>Predictive Inference Using Latent Variables with Covariates</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>EBSCOhost Education Source</source><creator>Schofield, Lynne Steuerle ; Junker, Brian ; Taylor, Lowell J. ; Black, Dan A.</creator><creatorcontrib>Schofield, Lynne Steuerle ; Junker, Brian ; Taylor, Lowell J. ; Black, Dan A.</creatorcontrib><description>Plausible values (PVs) are a standard multiple imputation tool for analysis of large education survey data, which measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts’ model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations model of Schofield (Modeling measurement error when using cognitive test scores in social science research. Doctoral dissertation. Department of Statistics and Heinz College of Public Policy. Pittsburgh, PA: Carnegie Mellon University, 2008 ).</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-014-9415-z</identifier><identifier>PMID: 25231627</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Academic Achievement ; Adult Literacy ; Algorithms ; Assessment ; Behavioral Science and Psychology ; Bias ; Cognitive Tests ; Conditioning ; Data Analysis ; Dependent variables ; Design ; Doctoral Dissertations ; Education ; Error of Measurement ; Humanities ; Humans ; Independent variables ; Inferences ; Item Response Theory ; Law ; Mathematics ; Models, Statistical ; National Competency Tests ; National Surveys ; Predictor Variables ; Psychology ; Psychometrics ; Regression (Statistics) ; Social Science Research ; Statistical Analysis ; Statistical Theory and Methods ; Statistics for Social Sciences ; Testing and Evaluation ; Variables</subject><ispartof>Psychometrika, 2015-09, Vol.80 (3), p.727-747</ispartof><rights>The Psychometric Society 2014</rights><rights>The Psychometric Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-a5f99fdf1c68ccc2a0717f12c597d429b57828a9965e2ff4235c9150c49361fb3</citedby><cites>FETCH-LOGICAL-c503t-a5f99fdf1c68ccc2a0717f12c597d429b57828a9965e2ff4235c9150c49361fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11336-014-9415-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11336-014-9415-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25231627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schofield, Lynne Steuerle</creatorcontrib><creatorcontrib>Junker, Brian</creatorcontrib><creatorcontrib>Taylor, Lowell J.</creatorcontrib><creatorcontrib>Black, Dan A.</creatorcontrib><title>Predictive Inference Using Latent Variables with Covariates</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><addtitle>Psychometrika</addtitle><description>Plausible values (PVs) are a standard multiple imputation tool for analysis of large education survey data, which measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts’ model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations model of Schofield (Modeling measurement error when using cognitive test scores in social science research. Doctoral dissertation. Department of Statistics and Heinz College of Public Policy. Pittsburgh, PA: Carnegie Mellon University, 2008 ).</description><subject>Academic Achievement</subject><subject>Adult Literacy</subject><subject>Algorithms</subject><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Bias</subject><subject>Cognitive Tests</subject><subject>Conditioning</subject><subject>Data Analysis</subject><subject>Dependent variables</subject><subject>Design</subject><subject>Doctoral Dissertations</subject><subject>Education</subject><subject>Error of Measurement</subject><subject>Humanities</subject><subject>Humans</subject><subject>Independent variables</subject><subject>Inferences</subject><subject>Item Response Theory</subject><subject>Law</subject><subject>Mathematics</subject><subject>Models, Statistical</subject><subject>National Competency Tests</subject><subject>National Surveys</subject><subject>Predictor Variables</subject><subject>Psychology</subject><subject>Psychometrics</subject><subject>Regression (Statistics)</subject><subject>Social Science Research</subject><subject>Statistical Analysis</subject><subject>Statistical Theory and Methods</subject><subject>Statistics for Social Sciences</subject><subject>Testing and Evaluation</subject><subject>Variables</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1LJDEQhoO46Dj6A7xIgxcvvVuVj04HQZDBLxhYD-o1ZDLJGOnp1qRnRH-9mR1XXEHYUyD11JtKPYTsI_xEAPkrITJWlYC8VBxF-bpBBlhXUIKqYZMMABgrGVK2TXZSegAAhXW9RbapoAwrKgfk-Dq6abB9WLriqvUuuta64jaFdlaMTe_avrgzMZhJ41LxHPr7YtQtVxe9S7vkhzdNcnvv55Dcnp_djC7L8e-Lq9HpuLQCWF8a4ZXyU4-2qq211IBE6ZFaoeSUUzURsqa1UaoSjnrPKRNWoQDLFavQT9iQnKxzHxeTuZvaPFQ0jX6MYW7ii-5M0P9W2nCvZ91Sc1ZxRSEHHL0HxO5p4VKv5yFZ1zSmdd0iaZRIpeQCq_9AoVZAVV7gkBx-QR-6RWzzJv5QnGcVPFO4pmzsUorOf8yNoFcW9dqizhb1yqJ-zT0Hnz_80fFXWwboGki51M5c_PT0t6lvLG6nMA</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Schofield, Lynne Steuerle</creator><creator>Junker, Brian</creator><creator>Taylor, Lowell J.</creator><creator>Black, Dan A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TK</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150901</creationdate><title>Predictive Inference Using Latent Variables with Covariates</title><author>Schofield, Lynne Steuerle ; Junker, Brian ; Taylor, Lowell J. ; Black, Dan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-a5f99fdf1c68ccc2a0717f12c597d429b57828a9965e2ff4235c9150c49361fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Academic Achievement</topic><topic>Adult Literacy</topic><topic>Algorithms</topic><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Bias</topic><topic>Cognitive Tests</topic><topic>Conditioning</topic><topic>Data Analysis</topic><topic>Dependent variables</topic><topic>Design</topic><topic>Doctoral Dissertations</topic><topic>Education</topic><topic>Error of Measurement</topic><topic>Humanities</topic><topic>Humans</topic><topic>Independent variables</topic><topic>Inferences</topic><topic>Item Response Theory</topic><topic>Law</topic><topic>Mathematics</topic><topic>Models, Statistical</topic><topic>National Competency Tests</topic><topic>National Surveys</topic><topic>Predictor Variables</topic><topic>Psychology</topic><topic>Psychometrics</topic><topic>Regression (Statistics)</topic><topic>Social Science Research</topic><topic>Statistical Analysis</topic><topic>Statistical Theory and Methods</topic><topic>Statistics for Social Sciences</topic><topic>Testing and Evaluation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schofield, Lynne Steuerle</creatorcontrib><creatorcontrib>Junker, Brian</creatorcontrib><creatorcontrib>Taylor, Lowell J.</creatorcontrib><creatorcontrib>Black, Dan A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Education Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schofield, Lynne Steuerle</au><au>Junker, Brian</au><au>Taylor, Lowell J.</au><au>Black, Dan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Inference Using Latent Variables with Covariates</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><addtitle>Psychometrika</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>80</volume><issue>3</issue><spage>727</spage><epage>747</epage><pages>727-747</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><abstract>Plausible values (PVs) are a standard multiple imputation tool for analysis of large education survey data, which measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts’ model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations model of Schofield (Modeling measurement error when using cognitive test scores in social science research. Doctoral dissertation. Department of Statistics and Heinz College of Public Policy. Pittsburgh, PA: Carnegie Mellon University, 2008 ).</abstract><cop>New York</cop><pub>Springer US</pub><pmid>25231627</pmid><doi>10.1007/s11336-014-9415-z</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 2015-09, Vol.80 (3), p.727-747
issn 0033-3123
1860-0980
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4364920
source MEDLINE; SpringerLink Journals; EBSCOhost Education Source
subjects Academic Achievement
Adult Literacy
Algorithms
Assessment
Behavioral Science and Psychology
Bias
Cognitive Tests
Conditioning
Data Analysis
Dependent variables
Design
Doctoral Dissertations
Education
Error of Measurement
Humanities
Humans
Independent variables
Inferences
Item Response Theory
Law
Mathematics
Models, Statistical
National Competency Tests
National Surveys
Predictor Variables
Psychology
Psychometrics
Regression (Statistics)
Social Science Research
Statistical Analysis
Statistical Theory and Methods
Statistics for Social Sciences
Testing and Evaluation
Variables
title Predictive Inference Using Latent Variables with Covariates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Inference%20Using%20Latent%20Variables%20with%20Covariates&rft.jtitle=Psychometrika&rft.au=Schofield,%20Lynne%20Steuerle&rft.date=2015-09-01&rft.volume=80&rft.issue=3&rft.spage=727&rft.epage=747&rft.pages=727-747&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/s11336-014-9415-z&rft_dat=%3Cproquest_pubme%3E1708902952%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708441864&rft_id=info:pmid/25231627&rfr_iscdi=true