Predictive Inference Using Latent Variables with Covariates
Plausible values (PVs) are a standard multiple imputation tool for analysis of large education survey data, which measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally generated PV methodology and find it applies with gre...
Gespeichert in:
Veröffentlicht in: | Psychometrika 2015-09, Vol.80 (3), p.727-747 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 747 |
---|---|
container_issue | 3 |
container_start_page | 727 |
container_title | Psychometrika |
container_volume | 80 |
creator | Schofield, Lynne Steuerle Junker, Brian Taylor, Lowell J. Black, Dan A. |
description | Plausible values (PVs) are a standard multiple imputation tool for analysis of large education survey data, which measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts’ model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations model of Schofield (Modeling measurement error when using cognitive test scores in social science research. Doctoral dissertation. Department of Statistics and Heinz College of Public Policy. Pittsburgh, PA: Carnegie Mellon University,
2008
). |
doi_str_mv | 10.1007/s11336-014-9415-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4364920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1708902952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-a5f99fdf1c68ccc2a0717f12c597d429b57828a9965e2ff4235c9150c49361fb3</originalsourceid><addsrcrecordid>eNqNkU1LJDEQhoO46Dj6A7xIgxcvvVuVj04HQZDBLxhYD-o1ZDLJGOnp1qRnRH-9mR1XXEHYUyD11JtKPYTsI_xEAPkrITJWlYC8VBxF-bpBBlhXUIKqYZMMABgrGVK2TXZSegAAhXW9RbapoAwrKgfk-Dq6abB9WLriqvUuuta64jaFdlaMTe_avrgzMZhJ41LxHPr7YtQtVxe9S7vkhzdNcnvv55Dcnp_djC7L8e-Lq9HpuLQCWF8a4ZXyU4-2qq211IBE6ZFaoeSUUzURsqa1UaoSjnrPKRNWoQDLFavQT9iQnKxzHxeTuZvaPFQ0jX6MYW7ii-5M0P9W2nCvZ91Sc1ZxRSEHHL0HxO5p4VKv5yFZ1zSmdd0iaZRIpeQCq_9AoVZAVV7gkBx-QR-6RWzzJv5QnGcVPFO4pmzsUorOf8yNoFcW9dqizhb1yqJ-zT0Hnz_80fFXWwboGki51M5c_PT0t6lvLG6nMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708441864</pqid></control><display><type>article</type><title>Predictive Inference Using Latent Variables with Covariates</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>EBSCOhost Education Source</source><creator>Schofield, Lynne Steuerle ; Junker, Brian ; Taylor, Lowell J. ; Black, Dan A.</creator><creatorcontrib>Schofield, Lynne Steuerle ; Junker, Brian ; Taylor, Lowell J. ; Black, Dan A.</creatorcontrib><description>Plausible values (PVs) are a standard multiple imputation tool for analysis of large education survey data, which measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts’ model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations model of Schofield (Modeling measurement error when using cognitive test scores in social science research. Doctoral dissertation. Department of Statistics and Heinz College of Public Policy. Pittsburgh, PA: Carnegie Mellon University,
2008
).</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-014-9415-z</identifier><identifier>PMID: 25231627</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Academic Achievement ; Adult Literacy ; Algorithms ; Assessment ; Behavioral Science and Psychology ; Bias ; Cognitive Tests ; Conditioning ; Data Analysis ; Dependent variables ; Design ; Doctoral Dissertations ; Education ; Error of Measurement ; Humanities ; Humans ; Independent variables ; Inferences ; Item Response Theory ; Law ; Mathematics ; Models, Statistical ; National Competency Tests ; National Surveys ; Predictor Variables ; Psychology ; Psychometrics ; Regression (Statistics) ; Social Science Research ; Statistical Analysis ; Statistical Theory and Methods ; Statistics for Social Sciences ; Testing and Evaluation ; Variables</subject><ispartof>Psychometrika, 2015-09, Vol.80 (3), p.727-747</ispartof><rights>The Psychometric Society 2014</rights><rights>The Psychometric Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-a5f99fdf1c68ccc2a0717f12c597d429b57828a9965e2ff4235c9150c49361fb3</citedby><cites>FETCH-LOGICAL-c503t-a5f99fdf1c68ccc2a0717f12c597d429b57828a9965e2ff4235c9150c49361fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11336-014-9415-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11336-014-9415-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25231627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schofield, Lynne Steuerle</creatorcontrib><creatorcontrib>Junker, Brian</creatorcontrib><creatorcontrib>Taylor, Lowell J.</creatorcontrib><creatorcontrib>Black, Dan A.</creatorcontrib><title>Predictive Inference Using Latent Variables with Covariates</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><addtitle>Psychometrika</addtitle><description>Plausible values (PVs) are a standard multiple imputation tool for analysis of large education survey data, which measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts’ model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations model of Schofield (Modeling measurement error when using cognitive test scores in social science research. Doctoral dissertation. Department of Statistics and Heinz College of Public Policy. Pittsburgh, PA: Carnegie Mellon University,
2008
).</description><subject>Academic Achievement</subject><subject>Adult Literacy</subject><subject>Algorithms</subject><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Bias</subject><subject>Cognitive Tests</subject><subject>Conditioning</subject><subject>Data Analysis</subject><subject>Dependent variables</subject><subject>Design</subject><subject>Doctoral Dissertations</subject><subject>Education</subject><subject>Error of Measurement</subject><subject>Humanities</subject><subject>Humans</subject><subject>Independent variables</subject><subject>Inferences</subject><subject>Item Response Theory</subject><subject>Law</subject><subject>Mathematics</subject><subject>Models, Statistical</subject><subject>National Competency Tests</subject><subject>National Surveys</subject><subject>Predictor Variables</subject><subject>Psychology</subject><subject>Psychometrics</subject><subject>Regression (Statistics)</subject><subject>Social Science Research</subject><subject>Statistical Analysis</subject><subject>Statistical Theory and Methods</subject><subject>Statistics for Social Sciences</subject><subject>Testing and Evaluation</subject><subject>Variables</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1LJDEQhoO46Dj6A7xIgxcvvVuVj04HQZDBLxhYD-o1ZDLJGOnp1qRnRH-9mR1XXEHYUyD11JtKPYTsI_xEAPkrITJWlYC8VBxF-bpBBlhXUIKqYZMMABgrGVK2TXZSegAAhXW9RbapoAwrKgfk-Dq6abB9WLriqvUuuta64jaFdlaMTe_avrgzMZhJ41LxHPr7YtQtVxe9S7vkhzdNcnvv55Dcnp_djC7L8e-Lq9HpuLQCWF8a4ZXyU4-2qq211IBE6ZFaoeSUUzURsqa1UaoSjnrPKRNWoQDLFavQT9iQnKxzHxeTuZvaPFQ0jX6MYW7ii-5M0P9W2nCvZ91Sc1ZxRSEHHL0HxO5p4VKv5yFZ1zSmdd0iaZRIpeQCq_9AoVZAVV7gkBx-QR-6RWzzJv5QnGcVPFO4pmzsUorOf8yNoFcW9dqizhb1yqJ-zT0Hnz_80fFXWwboGki51M5c_PT0t6lvLG6nMA</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Schofield, Lynne Steuerle</creator><creator>Junker, Brian</creator><creator>Taylor, Lowell J.</creator><creator>Black, Dan A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TK</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150901</creationdate><title>Predictive Inference Using Latent Variables with Covariates</title><author>Schofield, Lynne Steuerle ; Junker, Brian ; Taylor, Lowell J. ; Black, Dan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-a5f99fdf1c68ccc2a0717f12c597d429b57828a9965e2ff4235c9150c49361fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Academic Achievement</topic><topic>Adult Literacy</topic><topic>Algorithms</topic><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Bias</topic><topic>Cognitive Tests</topic><topic>Conditioning</topic><topic>Data Analysis</topic><topic>Dependent variables</topic><topic>Design</topic><topic>Doctoral Dissertations</topic><topic>Education</topic><topic>Error of Measurement</topic><topic>Humanities</topic><topic>Humans</topic><topic>Independent variables</topic><topic>Inferences</topic><topic>Item Response Theory</topic><topic>Law</topic><topic>Mathematics</topic><topic>Models, Statistical</topic><topic>National Competency Tests</topic><topic>National Surveys</topic><topic>Predictor Variables</topic><topic>Psychology</topic><topic>Psychometrics</topic><topic>Regression (Statistics)</topic><topic>Social Science Research</topic><topic>Statistical Analysis</topic><topic>Statistical Theory and Methods</topic><topic>Statistics for Social Sciences</topic><topic>Testing and Evaluation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schofield, Lynne Steuerle</creatorcontrib><creatorcontrib>Junker, Brian</creatorcontrib><creatorcontrib>Taylor, Lowell J.</creatorcontrib><creatorcontrib>Black, Dan A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Education Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schofield, Lynne Steuerle</au><au>Junker, Brian</au><au>Taylor, Lowell J.</au><au>Black, Dan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Inference Using Latent Variables with Covariates</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><addtitle>Psychometrika</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>80</volume><issue>3</issue><spage>727</spage><epage>747</epage><pages>727-747</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><abstract>Plausible values (PVs) are a standard multiple imputation tool for analysis of large education survey data, which measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts’ model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations model of Schofield (Modeling measurement error when using cognitive test scores in social science research. Doctoral dissertation. Department of Statistics and Heinz College of Public Policy. Pittsburgh, PA: Carnegie Mellon University,
2008
).</abstract><cop>New York</cop><pub>Springer US</pub><pmid>25231627</pmid><doi>10.1007/s11336-014-9415-z</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-3123 |
ispartof | Psychometrika, 2015-09, Vol.80 (3), p.727-747 |
issn | 0033-3123 1860-0980 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4364920 |
source | MEDLINE; SpringerLink Journals; EBSCOhost Education Source |
subjects | Academic Achievement Adult Literacy Algorithms Assessment Behavioral Science and Psychology Bias Cognitive Tests Conditioning Data Analysis Dependent variables Design Doctoral Dissertations Education Error of Measurement Humanities Humans Independent variables Inferences Item Response Theory Law Mathematics Models, Statistical National Competency Tests National Surveys Predictor Variables Psychology Psychometrics Regression (Statistics) Social Science Research Statistical Analysis Statistical Theory and Methods Statistics for Social Sciences Testing and Evaluation Variables |
title | Predictive Inference Using Latent Variables with Covariates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Inference%20Using%20Latent%20Variables%20with%20Covariates&rft.jtitle=Psychometrika&rft.au=Schofield,%20Lynne%20Steuerle&rft.date=2015-09-01&rft.volume=80&rft.issue=3&rft.spage=727&rft.epage=747&rft.pages=727-747&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/s11336-014-9415-z&rft_dat=%3Cproquest_pubme%3E1708902952%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708441864&rft_id=info:pmid/25231627&rfr_iscdi=true |