Activation of the brain melanocortin system is required for leptin-induced modulation of chemorespiratory function

Melanocortin receptors (MC3/4R) mediate most of the metabolic and cardiovascular actions of leptin. Aim Here, we tested if MC4R also contributes to leptin's effects on respiratory function. Methods After control measurements, male Holtzman rats received daily microinjections of leptin, SHU9119...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Physiologica 2015-04, Vol.213 (4), p.893-901
Hauptverfasser: Bassi, M., Nakamura, N. B., Furuya, W. I., Colombari, D. S. A., Menani, J. V., do Carmo, J. M., da Silva, A. A., Hall, J. E., Colombari, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 901
container_issue 4
container_start_page 893
container_title Acta Physiologica
container_volume 213
creator Bassi, M.
Nakamura, N. B.
Furuya, W. I.
Colombari, D. S. A.
Menani, J. V.
do Carmo, J. M.
da Silva, A. A.
Hall, J. E.
Colombari, E.
description Melanocortin receptors (MC3/4R) mediate most of the metabolic and cardiovascular actions of leptin. Aim Here, we tested if MC4R also contributes to leptin's effects on respiratory function. Methods After control measurements, male Holtzman rats received daily microinjections of leptin, SHU9119 (MC3/4R antagonist) or SHU9119 combined with leptin infused into the brain lateral ventricle for 7 days. On the 6th day of treatment, tidal volume (VT), respiratory frequency (fR) and pulmonary ventilation (VE) were measured by whole‐body plethysmography during normocapnia or hypercapnia (7% CO2). Baseline mean arterial pressure (MAP), heart rate (HR) and metabolic rate were also measured. VE, VT and fR were also measured in mice with leptin receptor deletion in the entire central nervous system (LepR/Nestin‐cre) or only in proopiomelanocortin neurones (LepR/POMC‐cre) and in MC4R knockout (MC4R−/−) and wild‐type mice. Results Leptin (5 μg day−1) reduced body weight (~17%) and increased ventilatory response to hypercapnia, whereas SHU9119 (0.6 nmol day−1) increased body weight (~18%) and reduced ventilatory responses compared with control‐PBS group (Lep: 2119 ± 90 mL min−1 kg−1 and SHU9119: 997 ± 67 mL min−1 kg−1, vs. PBS: 1379 ± 91 mL min−1 kg−1). MAP increased after leptin treatment (130 ± 2 mmHg) compared to PBS (106 ± 3 mmHg) or SHU9119 alone (109 ± 3 mmHg). SHU9119 prevented the effects of leptin on body weight, MAP (102 ± 3 mmHg) and ventilatory response to hypercapnia (1391 ± 137 mL min−1 kg−1). The ventilatory response to hypercapnia was attenuated in the LepR/Nestin‐cre, LepR/POMC‐cre and MC4R−/− mice. Conclusion These results suggest that central MC4R mediate the effects of leptin on respiratory response to hypercapnia.
doi_str_mv 10.1111/apha.12394
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4362918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3623480551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5894-83e96153b3818cddb031995f9ca410ba8f9ed2399e88620a2fddfdc8dc2139cd3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EolXphh-AIrFBSCl-xIm9QRpV7QxSVViAKrGxHPuacUni1E4K8-_xMG0ELPDGj_vdo3t8EHpJ8BnJ650et_qMUCarJ-iYNJUoSUPqp8sZiyN0mtItxphQwipKn6MjyiluGimPUVyZyd_ryYehCK6YtlC0Ufuh6KHTQzAhTvmSdmmCvvCpiHA3-wi2cCEWHYy5WvrBziY_9cHO3SJlttCHCGn0UU8h7go3D2ZffIGeOd0lOH3YT9CXy4vP55vy6uP6w_nqqjRcyKoUDGRNOGuZIMJY22JGpOROGl0R3GrhJNjsW4IQNcWaOmudNcKabFMay07Q-4PuOLc9WAPDFHWnxuh7HXcqaK_-rgx-q76Fe1WxmkoissCbB4EY7mZIk-p9MtDlj4EwJ0Xqpma84Yxk9PU_6G2Y45DtZapmVGJOeabeHigTQ0oR3DIMwWqfptqnqX6nmeFXf46_oI_ZZYAcgB--g91_pNTq02b1KFoeenwO9OfSo-N3VTes4ermeq3W1zeXrNpI9ZX9Aj_MvHU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1663290525</pqid></control><display><type>article</type><title>Activation of the brain melanocortin system is required for leptin-induced modulation of chemorespiratory function</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bassi, M. ; Nakamura, N. B. ; Furuya, W. I. ; Colombari, D. S. A. ; Menani, J. V. ; do Carmo, J. M. ; da Silva, A. A. ; Hall, J. E. ; Colombari, E.</creator><creatorcontrib>Bassi, M. ; Nakamura, N. B. ; Furuya, W. I. ; Colombari, D. S. A. ; Menani, J. V. ; do Carmo, J. M. ; da Silva, A. A. ; Hall, J. E. ; Colombari, E.</creatorcontrib><description>Melanocortin receptors (MC3/4R) mediate most of the metabolic and cardiovascular actions of leptin. Aim Here, we tested if MC4R also contributes to leptin's effects on respiratory function. Methods After control measurements, male Holtzman rats received daily microinjections of leptin, SHU9119 (MC3/4R antagonist) or SHU9119 combined with leptin infused into the brain lateral ventricle for 7 days. On the 6th day of treatment, tidal volume (VT), respiratory frequency (fR) and pulmonary ventilation (VE) were measured by whole‐body plethysmography during normocapnia or hypercapnia (7% CO2). Baseline mean arterial pressure (MAP), heart rate (HR) and metabolic rate were also measured. VE, VT and fR were also measured in mice with leptin receptor deletion in the entire central nervous system (LepR/Nestin‐cre) or only in proopiomelanocortin neurones (LepR/POMC‐cre) and in MC4R knockout (MC4R−/−) and wild‐type mice. Results Leptin (5 μg day−1) reduced body weight (~17%) and increased ventilatory response to hypercapnia, whereas SHU9119 (0.6 nmol day−1) increased body weight (~18%) and reduced ventilatory responses compared with control‐PBS group (Lep: 2119 ± 90 mL min−1 kg−1 and SHU9119: 997 ± 67 mL min−1 kg−1, vs. PBS: 1379 ± 91 mL min−1 kg−1). MAP increased after leptin treatment (130 ± 2 mmHg) compared to PBS (106 ± 3 mmHg) or SHU9119 alone (109 ± 3 mmHg). SHU9119 prevented the effects of leptin on body weight, MAP (102 ± 3 mmHg) and ventilatory response to hypercapnia (1391 ± 137 mL min−1 kg−1). The ventilatory response to hypercapnia was attenuated in the LepR/Nestin‐cre, LepR/POMC‐cre and MC4R−/− mice. Conclusion These results suggest that central MC4R mediate the effects of leptin on respiratory response to hypercapnia.</description><identifier>ISSN: 1748-1708</identifier><identifier>EISSN: 1748-1716</identifier><identifier>DOI: 10.1111/apha.12394</identifier><identifier>PMID: 25207799</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; blood pressure ; Body Weight - drug effects ; Carbon Dioxide - blood ; central chemoreception ; Gene Expression Regulation ; hypercapnia ; Hypercapnia - chemically induced ; leptin ; Leptin - administration &amp; dosage ; Leptin - pharmacology ; Male ; MC3/4 receptor ; melanocortin system ; Melanocortins - metabolism ; Melanocyte-Stimulating Hormones - administration &amp; dosage ; Melanocyte-Stimulating Hormones - pharmacology ; Mice ; Mice, Knockout ; Rats ; Rats, Sprague-Dawley ; Receptor, Melanocortin, Type 3 - genetics ; Receptor, Melanocortin, Type 3 - metabolism ; Receptor, Melanocortin, Type 4 - genetics ; Receptor, Melanocortin, Type 4 - metabolism ; Respiratory Physiological Phenomena - drug effects</subject><ispartof>Acta Physiologica, 2015-04, Vol.213 (4), p.893-901</ispartof><rights>2014 Scandinavian Physiological Society. Published by John Wiley &amp; Sons Ltd</rights><rights>2014 Scandinavian Physiological Society. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2015 Scandinavian Physiological Society. Published by John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5894-83e96153b3818cddb031995f9ca410ba8f9ed2399e88620a2fddfdc8dc2139cd3</citedby><cites>FETCH-LOGICAL-c5894-83e96153b3818cddb031995f9ca410ba8f9ed2399e88620a2fddfdc8dc2139cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fapha.12394$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fapha.12394$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25207799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bassi, M.</creatorcontrib><creatorcontrib>Nakamura, N. B.</creatorcontrib><creatorcontrib>Furuya, W. I.</creatorcontrib><creatorcontrib>Colombari, D. S. A.</creatorcontrib><creatorcontrib>Menani, J. V.</creatorcontrib><creatorcontrib>do Carmo, J. M.</creatorcontrib><creatorcontrib>da Silva, A. A.</creatorcontrib><creatorcontrib>Hall, J. E.</creatorcontrib><creatorcontrib>Colombari, E.</creatorcontrib><title>Activation of the brain melanocortin system is required for leptin-induced modulation of chemorespiratory function</title><title>Acta Physiologica</title><addtitle>Acta Physiol</addtitle><description>Melanocortin receptors (MC3/4R) mediate most of the metabolic and cardiovascular actions of leptin. Aim Here, we tested if MC4R also contributes to leptin's effects on respiratory function. Methods After control measurements, male Holtzman rats received daily microinjections of leptin, SHU9119 (MC3/4R antagonist) or SHU9119 combined with leptin infused into the brain lateral ventricle for 7 days. On the 6th day of treatment, tidal volume (VT), respiratory frequency (fR) and pulmonary ventilation (VE) were measured by whole‐body plethysmography during normocapnia or hypercapnia (7% CO2). Baseline mean arterial pressure (MAP), heart rate (HR) and metabolic rate were also measured. VE, VT and fR were also measured in mice with leptin receptor deletion in the entire central nervous system (LepR/Nestin‐cre) or only in proopiomelanocortin neurones (LepR/POMC‐cre) and in MC4R knockout (MC4R−/−) and wild‐type mice. Results Leptin (5 μg day−1) reduced body weight (~17%) and increased ventilatory response to hypercapnia, whereas SHU9119 (0.6 nmol day−1) increased body weight (~18%) and reduced ventilatory responses compared with control‐PBS group (Lep: 2119 ± 90 mL min−1 kg−1 and SHU9119: 997 ± 67 mL min−1 kg−1, vs. PBS: 1379 ± 91 mL min−1 kg−1). MAP increased after leptin treatment (130 ± 2 mmHg) compared to PBS (106 ± 3 mmHg) or SHU9119 alone (109 ± 3 mmHg). SHU9119 prevented the effects of leptin on body weight, MAP (102 ± 3 mmHg) and ventilatory response to hypercapnia (1391 ± 137 mL min−1 kg−1). The ventilatory response to hypercapnia was attenuated in the LepR/Nestin‐cre, LepR/POMC‐cre and MC4R−/− mice. Conclusion These results suggest that central MC4R mediate the effects of leptin on respiratory response to hypercapnia.</description><subject>Animals</subject><subject>blood pressure</subject><subject>Body Weight - drug effects</subject><subject>Carbon Dioxide - blood</subject><subject>central chemoreception</subject><subject>Gene Expression Regulation</subject><subject>hypercapnia</subject><subject>Hypercapnia - chemically induced</subject><subject>leptin</subject><subject>Leptin - administration &amp; dosage</subject><subject>Leptin - pharmacology</subject><subject>Male</subject><subject>MC3/4 receptor</subject><subject>melanocortin system</subject><subject>Melanocortins - metabolism</subject><subject>Melanocyte-Stimulating Hormones - administration &amp; dosage</subject><subject>Melanocyte-Stimulating Hormones - pharmacology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor, Melanocortin, Type 3 - genetics</subject><subject>Receptor, Melanocortin, Type 3 - metabolism</subject><subject>Receptor, Melanocortin, Type 4 - genetics</subject><subject>Receptor, Melanocortin, Type 4 - metabolism</subject><subject>Respiratory Physiological Phenomena - drug effects</subject><issn>1748-1708</issn><issn>1748-1716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhS0EolXphh-AIrFBSCl-xIm9QRpV7QxSVViAKrGxHPuacUni1E4K8-_xMG0ELPDGj_vdo3t8EHpJ8BnJ650et_qMUCarJ-iYNJUoSUPqp8sZiyN0mtItxphQwipKn6MjyiluGimPUVyZyd_ryYehCK6YtlC0Ufuh6KHTQzAhTvmSdmmCvvCpiHA3-wi2cCEWHYy5WvrBziY_9cHO3SJlttCHCGn0UU8h7go3D2ZffIGeOd0lOH3YT9CXy4vP55vy6uP6w_nqqjRcyKoUDGRNOGuZIMJY22JGpOROGl0R3GrhJNjsW4IQNcWaOmudNcKabFMay07Q-4PuOLc9WAPDFHWnxuh7HXcqaK_-rgx-q76Fe1WxmkoissCbB4EY7mZIk-p9MtDlj4EwJ0Xqpma84Yxk9PU_6G2Y45DtZapmVGJOeabeHigTQ0oR3DIMwWqfptqnqX6nmeFXf46_oI_ZZYAcgB--g91_pNTq02b1KFoeenwO9OfSo-N3VTes4ermeq3W1zeXrNpI9ZX9Aj_MvHU</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Bassi, M.</creator><creator>Nakamura, N. B.</creator><creator>Furuya, W. I.</creator><creator>Colombari, D. S. A.</creator><creator>Menani, J. V.</creator><creator>do Carmo, J. M.</creator><creator>da Silva, A. A.</creator><creator>Hall, J. E.</creator><creator>Colombari, E.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>5PM</scope></search><sort><creationdate>201504</creationdate><title>Activation of the brain melanocortin system is required for leptin-induced modulation of chemorespiratory function</title><author>Bassi, M. ; Nakamura, N. B. ; Furuya, W. I. ; Colombari, D. S. A. ; Menani, J. V. ; do Carmo, J. M. ; da Silva, A. A. ; Hall, J. E. ; Colombari, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5894-83e96153b3818cddb031995f9ca410ba8f9ed2399e88620a2fddfdc8dc2139cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>blood pressure</topic><topic>Body Weight - drug effects</topic><topic>Carbon Dioxide - blood</topic><topic>central chemoreception</topic><topic>Gene Expression Regulation</topic><topic>hypercapnia</topic><topic>Hypercapnia - chemically induced</topic><topic>leptin</topic><topic>Leptin - administration &amp; dosage</topic><topic>Leptin - pharmacology</topic><topic>Male</topic><topic>MC3/4 receptor</topic><topic>melanocortin system</topic><topic>Melanocortins - metabolism</topic><topic>Melanocyte-Stimulating Hormones - administration &amp; dosage</topic><topic>Melanocyte-Stimulating Hormones - pharmacology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor, Melanocortin, Type 3 - genetics</topic><topic>Receptor, Melanocortin, Type 3 - metabolism</topic><topic>Receptor, Melanocortin, Type 4 - genetics</topic><topic>Receptor, Melanocortin, Type 4 - metabolism</topic><topic>Respiratory Physiological Phenomena - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bassi, M.</creatorcontrib><creatorcontrib>Nakamura, N. B.</creatorcontrib><creatorcontrib>Furuya, W. I.</creatorcontrib><creatorcontrib>Colombari, D. S. A.</creatorcontrib><creatorcontrib>Menani, J. V.</creatorcontrib><creatorcontrib>do Carmo, J. M.</creatorcontrib><creatorcontrib>da Silva, A. A.</creatorcontrib><creatorcontrib>Hall, J. E.</creatorcontrib><creatorcontrib>Colombari, E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta Physiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bassi, M.</au><au>Nakamura, N. B.</au><au>Furuya, W. I.</au><au>Colombari, D. S. A.</au><au>Menani, J. V.</au><au>do Carmo, J. M.</au><au>da Silva, A. A.</au><au>Hall, J. E.</au><au>Colombari, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of the brain melanocortin system is required for leptin-induced modulation of chemorespiratory function</atitle><jtitle>Acta Physiologica</jtitle><addtitle>Acta Physiol</addtitle><date>2015-04</date><risdate>2015</risdate><volume>213</volume><issue>4</issue><spage>893</spage><epage>901</epage><pages>893-901</pages><issn>1748-1708</issn><eissn>1748-1716</eissn><abstract>Melanocortin receptors (MC3/4R) mediate most of the metabolic and cardiovascular actions of leptin. Aim Here, we tested if MC4R also contributes to leptin's effects on respiratory function. Methods After control measurements, male Holtzman rats received daily microinjections of leptin, SHU9119 (MC3/4R antagonist) or SHU9119 combined with leptin infused into the brain lateral ventricle for 7 days. On the 6th day of treatment, tidal volume (VT), respiratory frequency (fR) and pulmonary ventilation (VE) were measured by whole‐body plethysmography during normocapnia or hypercapnia (7% CO2). Baseline mean arterial pressure (MAP), heart rate (HR) and metabolic rate were also measured. VE, VT and fR were also measured in mice with leptin receptor deletion in the entire central nervous system (LepR/Nestin‐cre) or only in proopiomelanocortin neurones (LepR/POMC‐cre) and in MC4R knockout (MC4R−/−) and wild‐type mice. Results Leptin (5 μg day−1) reduced body weight (~17%) and increased ventilatory response to hypercapnia, whereas SHU9119 (0.6 nmol day−1) increased body weight (~18%) and reduced ventilatory responses compared with control‐PBS group (Lep: 2119 ± 90 mL min−1 kg−1 and SHU9119: 997 ± 67 mL min−1 kg−1, vs. PBS: 1379 ± 91 mL min−1 kg−1). MAP increased after leptin treatment (130 ± 2 mmHg) compared to PBS (106 ± 3 mmHg) or SHU9119 alone (109 ± 3 mmHg). SHU9119 prevented the effects of leptin on body weight, MAP (102 ± 3 mmHg) and ventilatory response to hypercapnia (1391 ± 137 mL min−1 kg−1). The ventilatory response to hypercapnia was attenuated in the LepR/Nestin‐cre, LepR/POMC‐cre and MC4R−/− mice. Conclusion These results suggest that central MC4R mediate the effects of leptin on respiratory response to hypercapnia.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25207799</pmid><doi>10.1111/apha.12394</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-1708
ispartof Acta Physiologica, 2015-04, Vol.213 (4), p.893-901
issn 1748-1708
1748-1716
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4362918
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
blood pressure
Body Weight - drug effects
Carbon Dioxide - blood
central chemoreception
Gene Expression Regulation
hypercapnia
Hypercapnia - chemically induced
leptin
Leptin - administration & dosage
Leptin - pharmacology
Male
MC3/4 receptor
melanocortin system
Melanocortins - metabolism
Melanocyte-Stimulating Hormones - administration & dosage
Melanocyte-Stimulating Hormones - pharmacology
Mice
Mice, Knockout
Rats
Rats, Sprague-Dawley
Receptor, Melanocortin, Type 3 - genetics
Receptor, Melanocortin, Type 3 - metabolism
Receptor, Melanocortin, Type 4 - genetics
Receptor, Melanocortin, Type 4 - metabolism
Respiratory Physiological Phenomena - drug effects
title Activation of the brain melanocortin system is required for leptin-induced modulation of chemorespiratory function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20the%20brain%20melanocortin%20system%20is%20required%20for%20leptin-induced%20modulation%20of%20chemorespiratory%20function&rft.jtitle=Acta%20Physiologica&rft.au=Bassi,%20M.&rft.date=2015-04&rft.volume=213&rft.issue=4&rft.spage=893&rft.epage=901&rft.pages=893-901&rft.issn=1748-1708&rft.eissn=1748-1716&rft_id=info:doi/10.1111/apha.12394&rft_dat=%3Cproquest_pubme%3E3623480551%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1663290525&rft_id=info:pmid/25207799&rfr_iscdi=true