Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects
The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2015-04, Vol.24 (7), p.1956-1976 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1976 |
---|---|
container_issue | 7 |
container_start_page | 1956 |
container_title | Human molecular genetics |
container_volume | 24 |
creator | Myklebust, Line M Van Damme, Petra Støve, Svein I Dörfel, Max J Abboud, Angèle Kalvik, Thomas V Grauffel, Cedric Jonckheere, Veronique Wu, Yiyang Swensen, Jeffrey Kaasa, Hanna Liszczak, Glen Marmorstein, Ronen Reuter, Nathalie Lyon, Gholson J Gevaert, Kris Arnesen, Thomas |
description | The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease. |
doi_str_mv | 10.1093/hmg/ddu611 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4355026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1662637712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-9046d3b29111cdc2f91db7311c4449d2bfc494d324f99729f6c42138f0fb01433</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoOj42_gDJUoRqbpKmk42g4gtEN7qUkOYxU2kbTVpl_r0ZRkVXri6H-3Hu4yC0D-QYiGQn8252Yu0oANbQBLggBSVTto4mRApeCEnEFtpO6YUQEJxVm2iLlnwqSUkn6Pm8CWbuusboFuveYuPadmx1zEK3i9QkHDx-mFnX47TobQydw9G9O90mbMNHn4bodIfvh0IbNyxaPTShx9Z5Z4a0izZ8Bt3eV91BT1eXjxc3xd3D9e3F2V1hOMBQSMKFZTWVAGCsoV6CrSuWBedcWlp7wyW3jHIvZUWlF4ZTYFNPfE2AM7aDTle-r2PdOWtcP0TdqtfYdDouVNCN-tvpm7mahXfFWVkSKrLB4ZdBDG-jS4PqmrR8he5dGJOCKs-Zkqok_6NCZMOqAprRoxVqYkgpOv-zERC1jE7l6NQqugwf_L7hB_3Oin0C-hWWsw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662637712</pqid></control><display><type>article</type><title>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Myklebust, Line M ; Van Damme, Petra ; Støve, Svein I ; Dörfel, Max J ; Abboud, Angèle ; Kalvik, Thomas V ; Grauffel, Cedric ; Jonckheere, Veronique ; Wu, Yiyang ; Swensen, Jeffrey ; Kaasa, Hanna ; Liszczak, Glen ; Marmorstein, Ronen ; Reuter, Nathalie ; Lyon, Gholson J ; Gevaert, Kris ; Arnesen, Thomas</creator><creatorcontrib>Myklebust, Line M ; Van Damme, Petra ; Støve, Svein I ; Dörfel, Max J ; Abboud, Angèle ; Kalvik, Thomas V ; Grauffel, Cedric ; Jonckheere, Veronique ; Wu, Yiyang ; Swensen, Jeffrey ; Kaasa, Hanna ; Liszczak, Glen ; Marmorstein, Ronen ; Reuter, Nathalie ; Lyon, Gholson J ; Gevaert, Kris ; Arnesen, Thomas</creatorcontrib><description>The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddu611</identifier><identifier>PMID: 25489052</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Acetylation ; Acetyltransferases - chemistry ; Acetyltransferases - genetics ; Acetyltransferases - metabolism ; Amino Acid Motifs ; Catalytic Domain ; Female ; Genetic Diseases, X-Linked - enzymology ; Genetic Diseases, X-Linked - genetics ; Genetic Diseases, X-Linked - metabolism ; Humans ; Male ; Mutation ; Pedigree ; Proteins - chemistry ; Proteins - genetics ; Proteins - metabolism</subject><ispartof>Human molecular genetics, 2015-04, Vol.24 (7), p.1956-1976</ispartof><rights>The Author 2014. Published by Oxford University Press.</rights><rights>The Author 2014. Published by Oxford University Press. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-9046d3b29111cdc2f91db7311c4449d2bfc494d324f99729f6c42138f0fb01433</citedby><cites>FETCH-LOGICAL-c411t-9046d3b29111cdc2f91db7311c4449d2bfc494d324f99729f6c42138f0fb01433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25489052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Myklebust, Line M</creatorcontrib><creatorcontrib>Van Damme, Petra</creatorcontrib><creatorcontrib>Støve, Svein I</creatorcontrib><creatorcontrib>Dörfel, Max J</creatorcontrib><creatorcontrib>Abboud, Angèle</creatorcontrib><creatorcontrib>Kalvik, Thomas V</creatorcontrib><creatorcontrib>Grauffel, Cedric</creatorcontrib><creatorcontrib>Jonckheere, Veronique</creatorcontrib><creatorcontrib>Wu, Yiyang</creatorcontrib><creatorcontrib>Swensen, Jeffrey</creatorcontrib><creatorcontrib>Kaasa, Hanna</creatorcontrib><creatorcontrib>Liszczak, Glen</creatorcontrib><creatorcontrib>Marmorstein, Ronen</creatorcontrib><creatorcontrib>Reuter, Nathalie</creatorcontrib><creatorcontrib>Lyon, Gholson J</creatorcontrib><creatorcontrib>Gevaert, Kris</creatorcontrib><creatorcontrib>Arnesen, Thomas</creatorcontrib><title>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.</description><subject>Acetylation</subject><subject>Acetyltransferases - chemistry</subject><subject>Acetyltransferases - genetics</subject><subject>Acetyltransferases - metabolism</subject><subject>Amino Acid Motifs</subject><subject>Catalytic Domain</subject><subject>Female</subject><subject>Genetic Diseases, X-Linked - enzymology</subject><subject>Genetic Diseases, X-Linked - genetics</subject><subject>Genetic Diseases, X-Linked - metabolism</subject><subject>Humans</subject><subject>Male</subject><subject>Mutation</subject><subject>Pedigree</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAUhYMoOj42_gDJUoRqbpKmk42g4gtEN7qUkOYxU2kbTVpl_r0ZRkVXri6H-3Hu4yC0D-QYiGQn8252Yu0oANbQBLggBSVTto4mRApeCEnEFtpO6YUQEJxVm2iLlnwqSUkn6Pm8CWbuusboFuveYuPadmx1zEK3i9QkHDx-mFnX47TobQydw9G9O90mbMNHn4bodIfvh0IbNyxaPTShx9Z5Z4a0izZ8Bt3eV91BT1eXjxc3xd3D9e3F2V1hOMBQSMKFZTWVAGCsoV6CrSuWBedcWlp7wyW3jHIvZUWlF4ZTYFNPfE2AM7aDTle-r2PdOWtcP0TdqtfYdDouVNCN-tvpm7mahXfFWVkSKrLB4ZdBDG-jS4PqmrR8he5dGJOCKs-Zkqok_6NCZMOqAprRoxVqYkgpOv-zERC1jE7l6NQqugwf_L7hB_3Oin0C-hWWsw</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Myklebust, Line M</creator><creator>Van Damme, Petra</creator><creator>Støve, Svein I</creator><creator>Dörfel, Max J</creator><creator>Abboud, Angèle</creator><creator>Kalvik, Thomas V</creator><creator>Grauffel, Cedric</creator><creator>Jonckheere, Veronique</creator><creator>Wu, Yiyang</creator><creator>Swensen, Jeffrey</creator><creator>Kaasa, Hanna</creator><creator>Liszczak, Glen</creator><creator>Marmorstein, Ronen</creator><creator>Reuter, Nathalie</creator><creator>Lyon, Gholson J</creator><creator>Gevaert, Kris</creator><creator>Arnesen, Thomas</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150401</creationdate><title>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</title><author>Myklebust, Line M ; Van Damme, Petra ; Støve, Svein I ; Dörfel, Max J ; Abboud, Angèle ; Kalvik, Thomas V ; Grauffel, Cedric ; Jonckheere, Veronique ; Wu, Yiyang ; Swensen, Jeffrey ; Kaasa, Hanna ; Liszczak, Glen ; Marmorstein, Ronen ; Reuter, Nathalie ; Lyon, Gholson J ; Gevaert, Kris ; Arnesen, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-9046d3b29111cdc2f91db7311c4449d2bfc494d324f99729f6c42138f0fb01433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acetylation</topic><topic>Acetyltransferases - chemistry</topic><topic>Acetyltransferases - genetics</topic><topic>Acetyltransferases - metabolism</topic><topic>Amino Acid Motifs</topic><topic>Catalytic Domain</topic><topic>Female</topic><topic>Genetic Diseases, X-Linked - enzymology</topic><topic>Genetic Diseases, X-Linked - genetics</topic><topic>Genetic Diseases, X-Linked - metabolism</topic><topic>Humans</topic><topic>Male</topic><topic>Mutation</topic><topic>Pedigree</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myklebust, Line M</creatorcontrib><creatorcontrib>Van Damme, Petra</creatorcontrib><creatorcontrib>Støve, Svein I</creatorcontrib><creatorcontrib>Dörfel, Max J</creatorcontrib><creatorcontrib>Abboud, Angèle</creatorcontrib><creatorcontrib>Kalvik, Thomas V</creatorcontrib><creatorcontrib>Grauffel, Cedric</creatorcontrib><creatorcontrib>Jonckheere, Veronique</creatorcontrib><creatorcontrib>Wu, Yiyang</creatorcontrib><creatorcontrib>Swensen, Jeffrey</creatorcontrib><creatorcontrib>Kaasa, Hanna</creatorcontrib><creatorcontrib>Liszczak, Glen</creatorcontrib><creatorcontrib>Marmorstein, Ronen</creatorcontrib><creatorcontrib>Reuter, Nathalie</creatorcontrib><creatorcontrib>Lyon, Gholson J</creatorcontrib><creatorcontrib>Gevaert, Kris</creatorcontrib><creatorcontrib>Arnesen, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myklebust, Line M</au><au>Van Damme, Petra</au><au>Støve, Svein I</au><au>Dörfel, Max J</au><au>Abboud, Angèle</au><au>Kalvik, Thomas V</au><au>Grauffel, Cedric</au><au>Jonckheere, Veronique</au><au>Wu, Yiyang</au><au>Swensen, Jeffrey</au><au>Kaasa, Hanna</au><au>Liszczak, Glen</au><au>Marmorstein, Ronen</au><au>Reuter, Nathalie</au><au>Lyon, Gholson J</au><au>Gevaert, Kris</au><au>Arnesen, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>24</volume><issue>7</issue><spage>1956</spage><epage>1976</epage><pages>1956-1976</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25489052</pmid><doi>10.1093/hmg/ddu611</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2015-04, Vol.24 (7), p.1956-1976 |
issn | 0964-6906 1460-2083 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4355026 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Acetylation Acetyltransferases - chemistry Acetyltransferases - genetics Acetyltransferases - metabolism Amino Acid Motifs Catalytic Domain Female Genetic Diseases, X-Linked - enzymology Genetic Diseases, X-Linked - genetics Genetic Diseases, X-Linked - metabolism Humans Male Mutation Pedigree Proteins - chemistry Proteins - genetics Proteins - metabolism |
title | Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20and%20cellular%20analysis%20of%20Ogden%20syndrome%20reveals%20downstream%20Nt-acetylation%20defects&rft.jtitle=Human%20molecular%20genetics&rft.au=Myklebust,%20Line%20M&rft.date=2015-04-01&rft.volume=24&rft.issue=7&rft.spage=1956&rft.epage=1976&rft.pages=1956-1976&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddu611&rft_dat=%3Cproquest_pubme%3E1662637712%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662637712&rft_id=info:pmid/25489052&rfr_iscdi=true |