Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects

The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2015-04, Vol.24 (7), p.1956-1976
Hauptverfasser: Myklebust, Line M, Van Damme, Petra, Støve, Svein I, Dörfel, Max J, Abboud, Angèle, Kalvik, Thomas V, Grauffel, Cedric, Jonckheere, Veronique, Wu, Yiyang, Swensen, Jeffrey, Kaasa, Hanna, Liszczak, Glen, Marmorstein, Ronen, Reuter, Nathalie, Lyon, Gholson J, Gevaert, Kris, Arnesen, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1976
container_issue 7
container_start_page 1956
container_title Human molecular genetics
container_volume 24
creator Myklebust, Line M
Van Damme, Petra
Støve, Svein I
Dörfel, Max J
Abboud, Angèle
Kalvik, Thomas V
Grauffel, Cedric
Jonckheere, Veronique
Wu, Yiyang
Swensen, Jeffrey
Kaasa, Hanna
Liszczak, Glen
Marmorstein, Ronen
Reuter, Nathalie
Lyon, Gholson J
Gevaert, Kris
Arnesen, Thomas
description The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.
doi_str_mv 10.1093/hmg/ddu611
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4355026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1662637712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-9046d3b29111cdc2f91db7311c4449d2bfc494d324f99729f6c42138f0fb01433</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoOj42_gDJUoRqbpKmk42g4gtEN7qUkOYxU2kbTVpl_r0ZRkVXri6H-3Hu4yC0D-QYiGQn8252Yu0oANbQBLggBSVTto4mRApeCEnEFtpO6YUQEJxVm2iLlnwqSUkn6Pm8CWbuusboFuveYuPadmx1zEK3i9QkHDx-mFnX47TobQydw9G9O90mbMNHn4bodIfvh0IbNyxaPTShx9Z5Z4a0izZ8Bt3eV91BT1eXjxc3xd3D9e3F2V1hOMBQSMKFZTWVAGCsoV6CrSuWBedcWlp7wyW3jHIvZUWlF4ZTYFNPfE2AM7aDTle-r2PdOWtcP0TdqtfYdDouVNCN-tvpm7mahXfFWVkSKrLB4ZdBDG-jS4PqmrR8he5dGJOCKs-Zkqok_6NCZMOqAprRoxVqYkgpOv-zERC1jE7l6NQqugwf_L7hB_3Oin0C-hWWsw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662637712</pqid></control><display><type>article</type><title>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Myklebust, Line M ; Van Damme, Petra ; Støve, Svein I ; Dörfel, Max J ; Abboud, Angèle ; Kalvik, Thomas V ; Grauffel, Cedric ; Jonckheere, Veronique ; Wu, Yiyang ; Swensen, Jeffrey ; Kaasa, Hanna ; Liszczak, Glen ; Marmorstein, Ronen ; Reuter, Nathalie ; Lyon, Gholson J ; Gevaert, Kris ; Arnesen, Thomas</creator><creatorcontrib>Myklebust, Line M ; Van Damme, Petra ; Støve, Svein I ; Dörfel, Max J ; Abboud, Angèle ; Kalvik, Thomas V ; Grauffel, Cedric ; Jonckheere, Veronique ; Wu, Yiyang ; Swensen, Jeffrey ; Kaasa, Hanna ; Liszczak, Glen ; Marmorstein, Ronen ; Reuter, Nathalie ; Lyon, Gholson J ; Gevaert, Kris ; Arnesen, Thomas</creatorcontrib><description>The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddu611</identifier><identifier>PMID: 25489052</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Acetylation ; Acetyltransferases - chemistry ; Acetyltransferases - genetics ; Acetyltransferases - metabolism ; Amino Acid Motifs ; Catalytic Domain ; Female ; Genetic Diseases, X-Linked - enzymology ; Genetic Diseases, X-Linked - genetics ; Genetic Diseases, X-Linked - metabolism ; Humans ; Male ; Mutation ; Pedigree ; Proteins - chemistry ; Proteins - genetics ; Proteins - metabolism</subject><ispartof>Human molecular genetics, 2015-04, Vol.24 (7), p.1956-1976</ispartof><rights>The Author 2014. Published by Oxford University Press.</rights><rights>The Author 2014. Published by Oxford University Press. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-9046d3b29111cdc2f91db7311c4449d2bfc494d324f99729f6c42138f0fb01433</citedby><cites>FETCH-LOGICAL-c411t-9046d3b29111cdc2f91db7311c4449d2bfc494d324f99729f6c42138f0fb01433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25489052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Myklebust, Line M</creatorcontrib><creatorcontrib>Van Damme, Petra</creatorcontrib><creatorcontrib>Støve, Svein I</creatorcontrib><creatorcontrib>Dörfel, Max J</creatorcontrib><creatorcontrib>Abboud, Angèle</creatorcontrib><creatorcontrib>Kalvik, Thomas V</creatorcontrib><creatorcontrib>Grauffel, Cedric</creatorcontrib><creatorcontrib>Jonckheere, Veronique</creatorcontrib><creatorcontrib>Wu, Yiyang</creatorcontrib><creatorcontrib>Swensen, Jeffrey</creatorcontrib><creatorcontrib>Kaasa, Hanna</creatorcontrib><creatorcontrib>Liszczak, Glen</creatorcontrib><creatorcontrib>Marmorstein, Ronen</creatorcontrib><creatorcontrib>Reuter, Nathalie</creatorcontrib><creatorcontrib>Lyon, Gholson J</creatorcontrib><creatorcontrib>Gevaert, Kris</creatorcontrib><creatorcontrib>Arnesen, Thomas</creatorcontrib><title>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.</description><subject>Acetylation</subject><subject>Acetyltransferases - chemistry</subject><subject>Acetyltransferases - genetics</subject><subject>Acetyltransferases - metabolism</subject><subject>Amino Acid Motifs</subject><subject>Catalytic Domain</subject><subject>Female</subject><subject>Genetic Diseases, X-Linked - enzymology</subject><subject>Genetic Diseases, X-Linked - genetics</subject><subject>Genetic Diseases, X-Linked - metabolism</subject><subject>Humans</subject><subject>Male</subject><subject>Mutation</subject><subject>Pedigree</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAUhYMoOj42_gDJUoRqbpKmk42g4gtEN7qUkOYxU2kbTVpl_r0ZRkVXri6H-3Hu4yC0D-QYiGQn8252Yu0oANbQBLggBSVTto4mRApeCEnEFtpO6YUQEJxVm2iLlnwqSUkn6Pm8CWbuusboFuveYuPadmx1zEK3i9QkHDx-mFnX47TobQydw9G9O90mbMNHn4bodIfvh0IbNyxaPTShx9Z5Z4a0izZ8Bt3eV91BT1eXjxc3xd3D9e3F2V1hOMBQSMKFZTWVAGCsoV6CrSuWBedcWlp7wyW3jHIvZUWlF4ZTYFNPfE2AM7aDTle-r2PdOWtcP0TdqtfYdDouVNCN-tvpm7mahXfFWVkSKrLB4ZdBDG-jS4PqmrR8he5dGJOCKs-Zkqok_6NCZMOqAprRoxVqYkgpOv-zERC1jE7l6NQqugwf_L7hB_3Oin0C-hWWsw</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Myklebust, Line M</creator><creator>Van Damme, Petra</creator><creator>Støve, Svein I</creator><creator>Dörfel, Max J</creator><creator>Abboud, Angèle</creator><creator>Kalvik, Thomas V</creator><creator>Grauffel, Cedric</creator><creator>Jonckheere, Veronique</creator><creator>Wu, Yiyang</creator><creator>Swensen, Jeffrey</creator><creator>Kaasa, Hanna</creator><creator>Liszczak, Glen</creator><creator>Marmorstein, Ronen</creator><creator>Reuter, Nathalie</creator><creator>Lyon, Gholson J</creator><creator>Gevaert, Kris</creator><creator>Arnesen, Thomas</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150401</creationdate><title>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</title><author>Myklebust, Line M ; Van Damme, Petra ; Støve, Svein I ; Dörfel, Max J ; Abboud, Angèle ; Kalvik, Thomas V ; Grauffel, Cedric ; Jonckheere, Veronique ; Wu, Yiyang ; Swensen, Jeffrey ; Kaasa, Hanna ; Liszczak, Glen ; Marmorstein, Ronen ; Reuter, Nathalie ; Lyon, Gholson J ; Gevaert, Kris ; Arnesen, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-9046d3b29111cdc2f91db7311c4449d2bfc494d324f99729f6c42138f0fb01433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acetylation</topic><topic>Acetyltransferases - chemistry</topic><topic>Acetyltransferases - genetics</topic><topic>Acetyltransferases - metabolism</topic><topic>Amino Acid Motifs</topic><topic>Catalytic Domain</topic><topic>Female</topic><topic>Genetic Diseases, X-Linked - enzymology</topic><topic>Genetic Diseases, X-Linked - genetics</topic><topic>Genetic Diseases, X-Linked - metabolism</topic><topic>Humans</topic><topic>Male</topic><topic>Mutation</topic><topic>Pedigree</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myklebust, Line M</creatorcontrib><creatorcontrib>Van Damme, Petra</creatorcontrib><creatorcontrib>Støve, Svein I</creatorcontrib><creatorcontrib>Dörfel, Max J</creatorcontrib><creatorcontrib>Abboud, Angèle</creatorcontrib><creatorcontrib>Kalvik, Thomas V</creatorcontrib><creatorcontrib>Grauffel, Cedric</creatorcontrib><creatorcontrib>Jonckheere, Veronique</creatorcontrib><creatorcontrib>Wu, Yiyang</creatorcontrib><creatorcontrib>Swensen, Jeffrey</creatorcontrib><creatorcontrib>Kaasa, Hanna</creatorcontrib><creatorcontrib>Liszczak, Glen</creatorcontrib><creatorcontrib>Marmorstein, Ronen</creatorcontrib><creatorcontrib>Reuter, Nathalie</creatorcontrib><creatorcontrib>Lyon, Gholson J</creatorcontrib><creatorcontrib>Gevaert, Kris</creatorcontrib><creatorcontrib>Arnesen, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myklebust, Line M</au><au>Van Damme, Petra</au><au>Støve, Svein I</au><au>Dörfel, Max J</au><au>Abboud, Angèle</au><au>Kalvik, Thomas V</au><au>Grauffel, Cedric</au><au>Jonckheere, Veronique</au><au>Wu, Yiyang</au><au>Swensen, Jeffrey</au><au>Kaasa, Hanna</au><au>Liszczak, Glen</au><au>Marmorstein, Ronen</au><au>Reuter, Nathalie</au><au>Lyon, Gholson J</au><au>Gevaert, Kris</au><au>Arnesen, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>24</volume><issue>7</issue><spage>1956</spage><epage>1976</epage><pages>1956-1976</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25489052</pmid><doi>10.1093/hmg/ddu611</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2015-04, Vol.24 (7), p.1956-1976
issn 0964-6906
1460-2083
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4355026
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Acetylation
Acetyltransferases - chemistry
Acetyltransferases - genetics
Acetyltransferases - metabolism
Amino Acid Motifs
Catalytic Domain
Female
Genetic Diseases, X-Linked - enzymology
Genetic Diseases, X-Linked - genetics
Genetic Diseases, X-Linked - metabolism
Humans
Male
Mutation
Pedigree
Proteins - chemistry
Proteins - genetics
Proteins - metabolism
title Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20and%20cellular%20analysis%20of%20Ogden%20syndrome%20reveals%20downstream%20Nt-acetylation%20defects&rft.jtitle=Human%20molecular%20genetics&rft.au=Myklebust,%20Line%20M&rft.date=2015-04-01&rft.volume=24&rft.issue=7&rft.spage=1956&rft.epage=1976&rft.pages=1956-1976&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddu611&rft_dat=%3Cproquest_pubme%3E1662637712%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662637712&rft_id=info:pmid/25489052&rfr_iscdi=true