Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks
Abstract Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In ad...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2015-04, Vol.48, p.137-146 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 146 |
---|---|
container_issue | |
container_start_page | 137 |
container_title | Biomaterials |
container_volume | 48 |
creator | An, Bo Tang-Schomer, Min D Huang, Wenwen He, Jiuyang Jones, Justin A Lewis, Randolph V Kaplan, David L |
description | Abstract Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In addition, neurons growing on MaSp1 films had increased neural cell adhesion molecule (NCAM) expression at both mRNA and protein levels. The results indicate that MaSp1 films present useful surface charge and substrate stiffness to support the growth of primary rat cortical neurons. Moreover, a putative neuron-specific surface binding sequence GRGGL within MaSp1 may contribute to the biological regulation of neuron growth. These findings indicate that MaSp1 could regulate neuron growth through its physical and biological features. This dual regulation mode of MaSp1 could provide an alternative strategy for generating functional silk materials for neural tissue engineering. |
doi_str_mv | 10.1016/j.biomaterials.2015.01.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4353650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961215000617</els_id><sourcerecordid>1701492513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-c9e9f861d81fb50eb97d3322768070f09fe61476e29c10ae4bcce29e64c3d5643</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEokvhFVDUE5ddZhw7iTlUQi3_pEogAWfL60x2vZvYxU622rfhWXgyHHapCpf2ZHv8fd9Y41-WnSEsELB8vVksre_1QMHqLi4YoFgALoDzR9kM66qeCwnicTYD5GwuS2Qn2bMYN5DOwNnT7ISJChAKOcvGL-t9tEZ3uXZNnnI7v_pzDLQaOz1Y73Lf5o7GkHapSI5CKu8oXwV_M6wn36-fjoYbH7Z560N_NE1q4_ulddoNeRP0qrOO8mi7bXyePWnT0-nFcT3Nvr9_9-3i4_zq84dPF2-v5kbIepgbSbKtS2xqbJcCaCmrpigYq8oaKmhBtlQir0pi0iBo4ktj0p5KbopGlLw4zc4PudfjsqfGkBuC7tR1sL0Oe-W1Vf_eOLtWK79TvBBFKSAFnB0CfBysisYOZNbGO0dmUFhwjiiT6NWxS_A_RoqD6m001HXakR-jYunXikJILu6VYgWyKhAfJkUumUjR90pLUXMmgFdJ-uYgNcHHGKi9HQaCmuhSG3WXLjXRpQBVoiuZX94d5631L05JcHkQUPrUnaUwjYycocaGaWKNtw_rc_5fjEnsTFhuaU9x48fgJg-qyBSorxPnE-YoAKDEqvgNRbn_Hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658425047</pqid></control><display><type>article</type><title>Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>An, Bo ; Tang-Schomer, Min D ; Huang, Wenwen ; He, Jiuyang ; Jones, Justin A ; Lewis, Randolph V ; Kaplan, David L</creator><creatorcontrib>An, Bo ; Tang-Schomer, Min D ; Huang, Wenwen ; He, Jiuyang ; Jones, Justin A ; Lewis, Randolph V ; Kaplan, David L ; Utah State Univ., Logan, UT (United States) ; Tufts Univ., Medford, MA (United States)</creatorcontrib><description>Abstract Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In addition, neurons growing on MaSp1 films had increased neural cell adhesion molecule (NCAM) expression at both mRNA and protein levels. The results indicate that MaSp1 films present useful surface charge and substrate stiffness to support the growth of primary rat cortical neurons. Moreover, a putative neuron-specific surface binding sequence GRGGL within MaSp1 may contribute to the biological regulation of neuron growth. These findings indicate that MaSp1 could regulate neuron growth through its physical and biological features. This dual regulation mode of MaSp1 could provide an alternative strategy for generating functional silk materials for neural tissue engineering.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.01.044</identifier><identifier>PMID: 25701039</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>60 APPLIED LIFE SCIENCES ; Advanced Basic Science ; Animals ; Araneae ; axons ; BASIC BIOLOGICAL SCIENCES ; Biological ; Biomaterial ; cell adhesion molecules ; cell biology ; cell culture ; Cell Division ; Cells, Cultured ; Control ; Dentistry ; goat milk ; Goats ; messenger RNA ; Milk ; Neural cell ; Neurons ; Neurons - cytology ; protein content ; Rats ; Rats, Sprague-Dawley ; Recombinant ; Recombinant protein ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - isolation & purification ; Regenerative ; Silk ; spidroins ; Tissue engineering ; transgenic animals</subject><ispartof>Biomaterials, 2015-04, Vol.48, p.137-146</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>2015 Published by Elsevier Ltd. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-c9e9f861d81fb50eb97d3322768070f09fe61476e29c10ae4bcce29e64c3d5643</citedby><cites>FETCH-LOGICAL-c598t-c9e9f861d81fb50eb97d3322768070f09fe61476e29c10ae4bcce29e64c3d5643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2015.01.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25701039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1344119$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Bo</creatorcontrib><creatorcontrib>Tang-Schomer, Min D</creatorcontrib><creatorcontrib>Huang, Wenwen</creatorcontrib><creatorcontrib>He, Jiuyang</creatorcontrib><creatorcontrib>Jones, Justin A</creatorcontrib><creatorcontrib>Lewis, Randolph V</creatorcontrib><creatorcontrib>Kaplan, David L</creatorcontrib><creatorcontrib>Utah State Univ., Logan, UT (United States)</creatorcontrib><creatorcontrib>Tufts Univ., Medford, MA (United States)</creatorcontrib><title>Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In addition, neurons growing on MaSp1 films had increased neural cell adhesion molecule (NCAM) expression at both mRNA and protein levels. The results indicate that MaSp1 films present useful surface charge and substrate stiffness to support the growth of primary rat cortical neurons. Moreover, a putative neuron-specific surface binding sequence GRGGL within MaSp1 may contribute to the biological regulation of neuron growth. These findings indicate that MaSp1 could regulate neuron growth through its physical and biological features. This dual regulation mode of MaSp1 could provide an alternative strategy for generating functional silk materials for neural tissue engineering.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Araneae</subject><subject>axons</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological</subject><subject>Biomaterial</subject><subject>cell adhesion molecules</subject><subject>cell biology</subject><subject>cell culture</subject><subject>Cell Division</subject><subject>Cells, Cultured</subject><subject>Control</subject><subject>Dentistry</subject><subject>goat milk</subject><subject>Goats</subject><subject>messenger RNA</subject><subject>Milk</subject><subject>Neural cell</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>protein content</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Recombinant</subject><subject>Recombinant protein</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - isolation & purification</subject><subject>Regenerative</subject><subject>Silk</subject><subject>spidroins</subject><subject>Tissue engineering</subject><subject>transgenic animals</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9u1DAQxiMEokvhFVDUE5ddZhw7iTlUQi3_pEogAWfL60x2vZvYxU622rfhWXgyHHapCpf2ZHv8fd9Y41-WnSEsELB8vVksre_1QMHqLi4YoFgALoDzR9kM66qeCwnicTYD5GwuS2Qn2bMYN5DOwNnT7ISJChAKOcvGL-t9tEZ3uXZNnnI7v_pzDLQaOz1Y73Lf5o7GkHapSI5CKu8oXwV_M6wn36-fjoYbH7Z560N_NE1q4_ulddoNeRP0qrOO8mi7bXyePWnT0-nFcT3Nvr9_9-3i4_zq84dPF2-v5kbIepgbSbKtS2xqbJcCaCmrpigYq8oaKmhBtlQir0pi0iBo4ktj0p5KbopGlLw4zc4PudfjsqfGkBuC7tR1sL0Oe-W1Vf_eOLtWK79TvBBFKSAFnB0CfBysisYOZNbGO0dmUFhwjiiT6NWxS_A_RoqD6m001HXakR-jYunXikJILu6VYgWyKhAfJkUumUjR90pLUXMmgFdJ-uYgNcHHGKi9HQaCmuhSG3WXLjXRpQBVoiuZX94d5631L05JcHkQUPrUnaUwjYycocaGaWKNtw_rc_5fjEnsTFhuaU9x48fgJg-qyBSorxPnE-YoAKDEqvgNRbn_Hw</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>An, Bo</creator><creator>Tang-Schomer, Min D</creator><creator>Huang, Wenwen</creator><creator>He, Jiuyang</creator><creator>Jones, Justin A</creator><creator>Lewis, Randolph V</creator><creator>Kaplan, David L</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20150401</creationdate><title>Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks</title><author>An, Bo ; Tang-Schomer, Min D ; Huang, Wenwen ; He, Jiuyang ; Jones, Justin A ; Lewis, Randolph V ; Kaplan, David L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-c9e9f861d81fb50eb97d3322768070f09fe61476e29c10ae4bcce29e64c3d5643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Araneae</topic><topic>axons</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological</topic><topic>Biomaterial</topic><topic>cell adhesion molecules</topic><topic>cell biology</topic><topic>cell culture</topic><topic>Cell Division</topic><topic>Cells, Cultured</topic><topic>Control</topic><topic>Dentistry</topic><topic>goat milk</topic><topic>Goats</topic><topic>messenger RNA</topic><topic>Milk</topic><topic>Neural cell</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>protein content</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Recombinant</topic><topic>Recombinant protein</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - isolation & purification</topic><topic>Regenerative</topic><topic>Silk</topic><topic>spidroins</topic><topic>Tissue engineering</topic><topic>transgenic animals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Bo</creatorcontrib><creatorcontrib>Tang-Schomer, Min D</creatorcontrib><creatorcontrib>Huang, Wenwen</creatorcontrib><creatorcontrib>He, Jiuyang</creatorcontrib><creatorcontrib>Jones, Justin A</creatorcontrib><creatorcontrib>Lewis, Randolph V</creatorcontrib><creatorcontrib>Kaplan, David L</creatorcontrib><creatorcontrib>Utah State Univ., Logan, UT (United States)</creatorcontrib><creatorcontrib>Tufts Univ., Medford, MA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Bo</au><au>Tang-Schomer, Min D</au><au>Huang, Wenwen</au><au>He, Jiuyang</au><au>Jones, Justin A</au><au>Lewis, Randolph V</au><au>Kaplan, David L</au><aucorp>Utah State Univ., Logan, UT (United States)</aucorp><aucorp>Tufts Univ., Medford, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>48</volume><spage>137</spage><epage>146</epage><pages>137-146</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In addition, neurons growing on MaSp1 films had increased neural cell adhesion molecule (NCAM) expression at both mRNA and protein levels. The results indicate that MaSp1 films present useful surface charge and substrate stiffness to support the growth of primary rat cortical neurons. Moreover, a putative neuron-specific surface binding sequence GRGGL within MaSp1 may contribute to the biological regulation of neuron growth. These findings indicate that MaSp1 could regulate neuron growth through its physical and biological features. This dual regulation mode of MaSp1 could provide an alternative strategy for generating functional silk materials for neural tissue engineering.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25701039</pmid><doi>10.1016/j.biomaterials.2015.01.044</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2015-04, Vol.48, p.137-146 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4353650 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | 60 APPLIED LIFE SCIENCES Advanced Basic Science Animals Araneae axons BASIC BIOLOGICAL SCIENCES Biological Biomaterial cell adhesion molecules cell biology cell culture Cell Division Cells, Cultured Control Dentistry goat milk Goats messenger RNA Milk Neural cell Neurons Neurons - cytology protein content Rats Rats, Sprague-Dawley Recombinant Recombinant protein Recombinant Proteins - biosynthesis Recombinant Proteins - isolation & purification Regenerative Silk spidroins Tissue engineering transgenic animals |
title | Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20and%20biological%20regulation%20of%20neuron%20regenerative%20growth%20and%C2%A0network%20formation%20on%20recombinant%20dragline%20silks&rft.jtitle=Biomaterials&rft.au=An,%20Bo&rft.aucorp=Utah%20State%20Univ.,%20Logan,%20UT%20(United%20States)&rft.date=2015-04-01&rft.volume=48&rft.spage=137&rft.epage=146&rft.pages=137-146&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.01.044&rft_dat=%3Cproquest_pubme%3E1701492513%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658425047&rft_id=info:pmid/25701039&rft_els_id=1_s2_0_S0142961215000617&rfr_iscdi=true |