Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks

Abstract Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2015-04, Vol.48, p.137-146
Hauptverfasser: An, Bo, Tang-Schomer, Min D, Huang, Wenwen, He, Jiuyang, Jones, Justin A, Lewis, Randolph V, Kaplan, David L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue
container_start_page 137
container_title Biomaterials
container_volume 48
creator An, Bo
Tang-Schomer, Min D
Huang, Wenwen
He, Jiuyang
Jones, Justin A
Lewis, Randolph V
Kaplan, David L
description Abstract Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In addition, neurons growing on MaSp1 films had increased neural cell adhesion molecule (NCAM) expression at both mRNA and protein levels. The results indicate that MaSp1 films present useful surface charge and substrate stiffness to support the growth of primary rat cortical neurons. Moreover, a putative neuron-specific surface binding sequence GRGGL within MaSp1 may contribute to the biological regulation of neuron growth. These findings indicate that MaSp1 could regulate neuron growth through its physical and biological features. This dual regulation mode of MaSp1 could provide an alternative strategy for generating functional silk materials for neural tissue engineering.
doi_str_mv 10.1016/j.biomaterials.2015.01.044
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4353650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961215000617</els_id><sourcerecordid>1701492513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-c9e9f861d81fb50eb97d3322768070f09fe61476e29c10ae4bcce29e64c3d5643</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEokvhFVDUE5ddZhw7iTlUQi3_pEogAWfL60x2vZvYxU622rfhWXgyHHapCpf2ZHv8fd9Y41-WnSEsELB8vVksre_1QMHqLi4YoFgALoDzR9kM66qeCwnicTYD5GwuS2Qn2bMYN5DOwNnT7ISJChAKOcvGL-t9tEZ3uXZNnnI7v_pzDLQaOz1Y73Lf5o7GkHapSI5CKu8oXwV_M6wn36-fjoYbH7Z560N_NE1q4_ulddoNeRP0qrOO8mi7bXyePWnT0-nFcT3Nvr9_9-3i4_zq84dPF2-v5kbIepgbSbKtS2xqbJcCaCmrpigYq8oaKmhBtlQir0pi0iBo4ktj0p5KbopGlLw4zc4PudfjsqfGkBuC7tR1sL0Oe-W1Vf_eOLtWK79TvBBFKSAFnB0CfBysisYOZNbGO0dmUFhwjiiT6NWxS_A_RoqD6m001HXakR-jYunXikJILu6VYgWyKhAfJkUumUjR90pLUXMmgFdJ-uYgNcHHGKi9HQaCmuhSG3WXLjXRpQBVoiuZX94d5631L05JcHkQUPrUnaUwjYycocaGaWKNtw_rc_5fjEnsTFhuaU9x48fgJg-qyBSorxPnE-YoAKDEqvgNRbn_Hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658425047</pqid></control><display><type>article</type><title>Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>An, Bo ; Tang-Schomer, Min D ; Huang, Wenwen ; He, Jiuyang ; Jones, Justin A ; Lewis, Randolph V ; Kaplan, David L</creator><creatorcontrib>An, Bo ; Tang-Schomer, Min D ; Huang, Wenwen ; He, Jiuyang ; Jones, Justin A ; Lewis, Randolph V ; Kaplan, David L ; Utah State Univ., Logan, UT (United States) ; Tufts Univ., Medford, MA (United States)</creatorcontrib><description>Abstract Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In addition, neurons growing on MaSp1 films had increased neural cell adhesion molecule (NCAM) expression at both mRNA and protein levels. The results indicate that MaSp1 films present useful surface charge and substrate stiffness to support the growth of primary rat cortical neurons. Moreover, a putative neuron-specific surface binding sequence GRGGL within MaSp1 may contribute to the biological regulation of neuron growth. These findings indicate that MaSp1 could regulate neuron growth through its physical and biological features. This dual regulation mode of MaSp1 could provide an alternative strategy for generating functional silk materials for neural tissue engineering.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.01.044</identifier><identifier>PMID: 25701039</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>60 APPLIED LIFE SCIENCES ; Advanced Basic Science ; Animals ; Araneae ; axons ; BASIC BIOLOGICAL SCIENCES ; Biological ; Biomaterial ; cell adhesion molecules ; cell biology ; cell culture ; Cell Division ; Cells, Cultured ; Control ; Dentistry ; goat milk ; Goats ; messenger RNA ; Milk ; Neural cell ; Neurons ; Neurons - cytology ; protein content ; Rats ; Rats, Sprague-Dawley ; Recombinant ; Recombinant protein ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - isolation &amp; purification ; Regenerative ; Silk ; spidroins ; Tissue engineering ; transgenic animals</subject><ispartof>Biomaterials, 2015-04, Vol.48, p.137-146</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>2015 Published by Elsevier Ltd. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-c9e9f861d81fb50eb97d3322768070f09fe61476e29c10ae4bcce29e64c3d5643</citedby><cites>FETCH-LOGICAL-c598t-c9e9f861d81fb50eb97d3322768070f09fe61476e29c10ae4bcce29e64c3d5643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2015.01.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25701039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1344119$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Bo</creatorcontrib><creatorcontrib>Tang-Schomer, Min D</creatorcontrib><creatorcontrib>Huang, Wenwen</creatorcontrib><creatorcontrib>He, Jiuyang</creatorcontrib><creatorcontrib>Jones, Justin A</creatorcontrib><creatorcontrib>Lewis, Randolph V</creatorcontrib><creatorcontrib>Kaplan, David L</creatorcontrib><creatorcontrib>Utah State Univ., Logan, UT (United States)</creatorcontrib><creatorcontrib>Tufts Univ., Medford, MA (United States)</creatorcontrib><title>Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In addition, neurons growing on MaSp1 films had increased neural cell adhesion molecule (NCAM) expression at both mRNA and protein levels. The results indicate that MaSp1 films present useful surface charge and substrate stiffness to support the growth of primary rat cortical neurons. Moreover, a putative neuron-specific surface binding sequence GRGGL within MaSp1 may contribute to the biological regulation of neuron growth. These findings indicate that MaSp1 could regulate neuron growth through its physical and biological features. This dual regulation mode of MaSp1 could provide an alternative strategy for generating functional silk materials for neural tissue engineering.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Araneae</subject><subject>axons</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological</subject><subject>Biomaterial</subject><subject>cell adhesion molecules</subject><subject>cell biology</subject><subject>cell culture</subject><subject>Cell Division</subject><subject>Cells, Cultured</subject><subject>Control</subject><subject>Dentistry</subject><subject>goat milk</subject><subject>Goats</subject><subject>messenger RNA</subject><subject>Milk</subject><subject>Neural cell</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>protein content</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Recombinant</subject><subject>Recombinant protein</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>Regenerative</subject><subject>Silk</subject><subject>spidroins</subject><subject>Tissue engineering</subject><subject>transgenic animals</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9u1DAQxiMEokvhFVDUE5ddZhw7iTlUQi3_pEogAWfL60x2vZvYxU622rfhWXgyHHapCpf2ZHv8fd9Y41-WnSEsELB8vVksre_1QMHqLi4YoFgALoDzR9kM66qeCwnicTYD5GwuS2Qn2bMYN5DOwNnT7ISJChAKOcvGL-t9tEZ3uXZNnnI7v_pzDLQaOz1Y73Lf5o7GkHapSI5CKu8oXwV_M6wn36-fjoYbH7Z560N_NE1q4_ulddoNeRP0qrOO8mi7bXyePWnT0-nFcT3Nvr9_9-3i4_zq84dPF2-v5kbIepgbSbKtS2xqbJcCaCmrpigYq8oaKmhBtlQir0pi0iBo4ktj0p5KbopGlLw4zc4PudfjsqfGkBuC7tR1sL0Oe-W1Vf_eOLtWK79TvBBFKSAFnB0CfBysisYOZNbGO0dmUFhwjiiT6NWxS_A_RoqD6m001HXakR-jYunXikJILu6VYgWyKhAfJkUumUjR90pLUXMmgFdJ-uYgNcHHGKi9HQaCmuhSG3WXLjXRpQBVoiuZX94d5631L05JcHkQUPrUnaUwjYycocaGaWKNtw_rc_5fjEnsTFhuaU9x48fgJg-qyBSorxPnE-YoAKDEqvgNRbn_Hw</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>An, Bo</creator><creator>Tang-Schomer, Min D</creator><creator>Huang, Wenwen</creator><creator>He, Jiuyang</creator><creator>Jones, Justin A</creator><creator>Lewis, Randolph V</creator><creator>Kaplan, David L</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20150401</creationdate><title>Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks</title><author>An, Bo ; Tang-Schomer, Min D ; Huang, Wenwen ; He, Jiuyang ; Jones, Justin A ; Lewis, Randolph V ; Kaplan, David L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-c9e9f861d81fb50eb97d3322768070f09fe61476e29c10ae4bcce29e64c3d5643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Araneae</topic><topic>axons</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological</topic><topic>Biomaterial</topic><topic>cell adhesion molecules</topic><topic>cell biology</topic><topic>cell culture</topic><topic>Cell Division</topic><topic>Cells, Cultured</topic><topic>Control</topic><topic>Dentistry</topic><topic>goat milk</topic><topic>Goats</topic><topic>messenger RNA</topic><topic>Milk</topic><topic>Neural cell</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>protein content</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Recombinant</topic><topic>Recombinant protein</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>Regenerative</topic><topic>Silk</topic><topic>spidroins</topic><topic>Tissue engineering</topic><topic>transgenic animals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Bo</creatorcontrib><creatorcontrib>Tang-Schomer, Min D</creatorcontrib><creatorcontrib>Huang, Wenwen</creatorcontrib><creatorcontrib>He, Jiuyang</creatorcontrib><creatorcontrib>Jones, Justin A</creatorcontrib><creatorcontrib>Lewis, Randolph V</creatorcontrib><creatorcontrib>Kaplan, David L</creatorcontrib><creatorcontrib>Utah State Univ., Logan, UT (United States)</creatorcontrib><creatorcontrib>Tufts Univ., Medford, MA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Bo</au><au>Tang-Schomer, Min D</au><au>Huang, Wenwen</au><au>He, Jiuyang</au><au>Jones, Justin A</au><au>Lewis, Randolph V</au><au>Kaplan, David L</au><aucorp>Utah State Univ., Logan, UT (United States)</aucorp><aucorp>Tufts Univ., Medford, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>48</volume><spage>137</spage><epage>146</epage><pages>137-146</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In addition, neurons growing on MaSp1 films had increased neural cell adhesion molecule (NCAM) expression at both mRNA and protein levels. The results indicate that MaSp1 films present useful surface charge and substrate stiffness to support the growth of primary rat cortical neurons. Moreover, a putative neuron-specific surface binding sequence GRGGL within MaSp1 may contribute to the biological regulation of neuron growth. These findings indicate that MaSp1 could regulate neuron growth through its physical and biological features. This dual regulation mode of MaSp1 could provide an alternative strategy for generating functional silk materials for neural tissue engineering.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25701039</pmid><doi>10.1016/j.biomaterials.2015.01.044</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2015-04, Vol.48, p.137-146
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4353650
source MEDLINE; Elsevier ScienceDirect Journals
subjects 60 APPLIED LIFE SCIENCES
Advanced Basic Science
Animals
Araneae
axons
BASIC BIOLOGICAL SCIENCES
Biological
Biomaterial
cell adhesion molecules
cell biology
cell culture
Cell Division
Cells, Cultured
Control
Dentistry
goat milk
Goats
messenger RNA
Milk
Neural cell
Neurons
Neurons - cytology
protein content
Rats
Rats, Sprague-Dawley
Recombinant
Recombinant protein
Recombinant Proteins - biosynthesis
Recombinant Proteins - isolation & purification
Regenerative
Silk
spidroins
Tissue engineering
transgenic animals
title Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20and%20biological%20regulation%20of%20neuron%20regenerative%20growth%20and%C2%A0network%20formation%20on%20recombinant%20dragline%20silks&rft.jtitle=Biomaterials&rft.au=An,%20Bo&rft.aucorp=Utah%20State%20Univ.,%20Logan,%20UT%20(United%20States)&rft.date=2015-04-01&rft.volume=48&rft.spage=137&rft.epage=146&rft.pages=137-146&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.01.044&rft_dat=%3Cproquest_pubme%3E1701492513%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658425047&rft_id=info:pmid/25701039&rft_els_id=1_s2_0_S0142961215000617&rfr_iscdi=true