Enzyme Enhancers for the Treatment of Fabry and Pompe Disease
Lysosomal storage disorders (LSD) are a group of heterogeneous diseases caused by compromised enzyme function leading to multiple organ failure. Therapeutic approaches involve enzyme replacement (ERT), which is effective for a substantial fraction of patients. However, there are still concerns about...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2015-03, Vol.23 (3), p.456-464 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 464 |
---|---|
container_issue | 3 |
container_start_page | 456 |
container_title | Molecular therapy |
container_volume | 23 |
creator | Lukas, Jan Pockrandt, Anne-Marie Seemann, Susanne Sharif, Muhammad Runge, Franziska Pohlers, Susann Zheng, Chaonan Gläser, Anne Beller, Matthias Rolfs, Arndt Giese, Anne-Katrin |
description | Lysosomal storage disorders (LSD) are a group of heterogeneous diseases caused by compromised enzyme function leading to multiple organ failure. Therapeutic approaches involve enzyme replacement (ERT), which is effective for a substantial fraction of patients. However, there are still concerns about a number of issues including tissue penetrance, generation of host antibodies against the therapeutic enzyme, and financial aspects, which render this therapy suboptimal for many cases. Treatment with pharmacological chaperones (PC) was recognized as a possible alternative to ERT, because a great number of mutations do not completely abolish enzyme function, but rather trigger degradation in the endoplasmic reticulum. The theory behind PC is that they can stabilize enzymes with remaining function, avoid degradation and thereby ameliorate disease symptoms. We tested several compounds in order to identify novel small molecules that prevent premature degradation of the mutant lysosomal enzymes α-galactosidase A (for Fabry disease (FD)) and acid α-glucosidase (GAA) (for Pompe disease (PD)). We discovered that the expectorant Ambroxol when used in conjunction with known PC resulted in a significant enhancement of mutant α-galactosidase A and GAA activities. Rosiglitazone was effective on α-galactosidase A either as a monotherapy or when administered in combination with the PC 1-deoxygalactonojirimycin. We therefore propose both drugs as potential enhancers of pharmacological chaperones in FD and PD to improve current treatment strategies. |
doi_str_mv | 10.1038/mt.2014.224 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4351457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001616300594</els_id><sourcerecordid>1776666850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-57de82dd02d89aaa01d24ffdb8aa1e9b8a680660a5d2639b22c0bcaa5071d12b3</originalsourceid><addsrcrecordid>eNqFkc9rVDEQx0NR2lo99V4CXgTZNcnLr3doQepWhYIe6jnMS-Z1U_a9bJO3hfWvN2XrUkUwlxnIhw8z8yXklLM5Z439MExzwbicCyEPyDFXQs0YE_LFvuf6iLwq5a52XLX6kBwJJVlrpDwm54vx53ZAuhiXMHrMhfYp02mJ9CYjTAOOE009vYIubymMgX5Pwxrpp1gQCr4mL3tYFXzzVE_Ij6vFzeWX2fW3z18vP17PvLR2mikT0IoQmAi2BQDGg5B9HzoLwLGtRVumNQMVhG7aTgjPOg-gmOGBi645IRc773rTDRh8nSrDyq1zHCBvXYLo_vwZ49LdpgcnG8WlMlXw7kmQ0_0Gy-SGWDyuVjBi2hTHjdH1WcX-j2ojWMu5biv69i_0Lm3yWC9RhS1vrGmMrtT7HeVzKiVjv5-bM_eYoBsm95igqwlW-uz5qnv2d2QVUDsA68EfImZXfMSaXYgZ_eRCiv8U_wIqOqd-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791387376</pqid></control><display><type>article</type><title>Enzyme Enhancers for the Treatment of Fabry and Pompe Disease</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lukas, Jan ; Pockrandt, Anne-Marie ; Seemann, Susanne ; Sharif, Muhammad ; Runge, Franziska ; Pohlers, Susann ; Zheng, Chaonan ; Gläser, Anne ; Beller, Matthias ; Rolfs, Arndt ; Giese, Anne-Katrin</creator><creatorcontrib>Lukas, Jan ; Pockrandt, Anne-Marie ; Seemann, Susanne ; Sharif, Muhammad ; Runge, Franziska ; Pohlers, Susann ; Zheng, Chaonan ; Gläser, Anne ; Beller, Matthias ; Rolfs, Arndt ; Giese, Anne-Katrin</creatorcontrib><description>Lysosomal storage disorders (LSD) are a group of heterogeneous diseases caused by compromised enzyme function leading to multiple organ failure. Therapeutic approaches involve enzyme replacement (ERT), which is effective for a substantial fraction of patients. However, there are still concerns about a number of issues including tissue penetrance, generation of host antibodies against the therapeutic enzyme, and financial aspects, which render this therapy suboptimal for many cases. Treatment with pharmacological chaperones (PC) was recognized as a possible alternative to ERT, because a great number of mutations do not completely abolish enzyme function, but rather trigger degradation in the endoplasmic reticulum. The theory behind PC is that they can stabilize enzymes with remaining function, avoid degradation and thereby ameliorate disease symptoms. We tested several compounds in order to identify novel small molecules that prevent premature degradation of the mutant lysosomal enzymes α-galactosidase A (for Fabry disease (FD)) and acid α-glucosidase (GAA) (for Pompe disease (PD)). We discovered that the expectorant Ambroxol when used in conjunction with known PC resulted in a significant enhancement of mutant α-galactosidase A and GAA activities. Rosiglitazone was effective on α-galactosidase A either as a monotherapy or when administered in combination with the PC 1-deoxygalactonojirimycin. We therefore propose both drugs as potential enhancers of pharmacological chaperones in FD and PD to improve current treatment strategies.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1038/mt.2014.224</identifier><identifier>PMID: 25409744</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>1-Deoxynojirimycin - analogs & derivatives ; 1-Deoxynojirimycin - pharmacology ; Acetylcysteine - analogs & derivatives ; Acetylcysteine - pharmacology ; alpha-Galactosidase - genetics ; alpha-Galactosidase - metabolism ; alpha-Glucosidases - genetics ; alpha-Glucosidases - metabolism ; Ambroxol - pharmacology ; Antibodies ; Bezafibrate - pharmacology ; Disease ; Endoplasmic reticulum ; Enzyme Activators - pharmacology ; Enzymes ; Fabry Disease - drug therapy ; Fabry Disease - enzymology ; Gene Expression ; Glycogen Storage Disease Type II - drug therapy ; Glycogen Storage Disease Type II - enzymology ; HEK293 Cells ; Humans ; Leupeptins - pharmacology ; LSD ; Lysergic acid diethylamide ; Lysosomes - drug effects ; Lysosomes - metabolism ; Mutation ; Original ; Pioglitazone ; Plasmids - chemistry ; Plasmids - metabolism ; Proteasome Endopeptidase Complex - drug effects ; Proteasome Endopeptidase Complex - metabolism ; Proteasome Inhibitors - pharmacology ; Protein Stability ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Thiazolidinediones - pharmacology ; Transfection</subject><ispartof>Molecular therapy, 2015-03, Vol.23 (3), p.456-464</ispartof><rights>2015 American Society of Gene & Cell Therapy</rights><rights>Copyright Nature Publishing Group Mar 2015</rights><rights>Copyright © 2015 American Society of Gene & Cell Therapy 2015 American Society of Gene & Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-57de82dd02d89aaa01d24ffdb8aa1e9b8a680660a5d2639b22c0bcaa5071d12b3</citedby><cites>FETCH-LOGICAL-c488t-57de82dd02d89aaa01d24ffdb8aa1e9b8a680660a5d2639b22c0bcaa5071d12b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351457/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1791387376?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791,64383,64385,64387,72239</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25409744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lukas, Jan</creatorcontrib><creatorcontrib>Pockrandt, Anne-Marie</creatorcontrib><creatorcontrib>Seemann, Susanne</creatorcontrib><creatorcontrib>Sharif, Muhammad</creatorcontrib><creatorcontrib>Runge, Franziska</creatorcontrib><creatorcontrib>Pohlers, Susann</creatorcontrib><creatorcontrib>Zheng, Chaonan</creatorcontrib><creatorcontrib>Gläser, Anne</creatorcontrib><creatorcontrib>Beller, Matthias</creatorcontrib><creatorcontrib>Rolfs, Arndt</creatorcontrib><creatorcontrib>Giese, Anne-Katrin</creatorcontrib><title>Enzyme Enhancers for the Treatment of Fabry and Pompe Disease</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Lysosomal storage disorders (LSD) are a group of heterogeneous diseases caused by compromised enzyme function leading to multiple organ failure. Therapeutic approaches involve enzyme replacement (ERT), which is effective for a substantial fraction of patients. However, there are still concerns about a number of issues including tissue penetrance, generation of host antibodies against the therapeutic enzyme, and financial aspects, which render this therapy suboptimal for many cases. Treatment with pharmacological chaperones (PC) was recognized as a possible alternative to ERT, because a great number of mutations do not completely abolish enzyme function, but rather trigger degradation in the endoplasmic reticulum. The theory behind PC is that they can stabilize enzymes with remaining function, avoid degradation and thereby ameliorate disease symptoms. We tested several compounds in order to identify novel small molecules that prevent premature degradation of the mutant lysosomal enzymes α-galactosidase A (for Fabry disease (FD)) and acid α-glucosidase (GAA) (for Pompe disease (PD)). We discovered that the expectorant Ambroxol when used in conjunction with known PC resulted in a significant enhancement of mutant α-galactosidase A and GAA activities. Rosiglitazone was effective on α-galactosidase A either as a monotherapy or when administered in combination with the PC 1-deoxygalactonojirimycin. We therefore propose both drugs as potential enhancers of pharmacological chaperones in FD and PD to improve current treatment strategies.</description><subject>1-Deoxynojirimycin - analogs & derivatives</subject><subject>1-Deoxynojirimycin - pharmacology</subject><subject>Acetylcysteine - analogs & derivatives</subject><subject>Acetylcysteine - pharmacology</subject><subject>alpha-Galactosidase - genetics</subject><subject>alpha-Galactosidase - metabolism</subject><subject>alpha-Glucosidases - genetics</subject><subject>alpha-Glucosidases - metabolism</subject><subject>Ambroxol - pharmacology</subject><subject>Antibodies</subject><subject>Bezafibrate - pharmacology</subject><subject>Disease</subject><subject>Endoplasmic reticulum</subject><subject>Enzyme Activators - pharmacology</subject><subject>Enzymes</subject><subject>Fabry Disease - drug therapy</subject><subject>Fabry Disease - enzymology</subject><subject>Gene Expression</subject><subject>Glycogen Storage Disease Type II - drug therapy</subject><subject>Glycogen Storage Disease Type II - enzymology</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Leupeptins - pharmacology</subject><subject>LSD</subject><subject>Lysergic acid diethylamide</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Mutation</subject><subject>Original</subject><subject>Pioglitazone</subject><subject>Plasmids - chemistry</subject><subject>Plasmids - metabolism</subject><subject>Proteasome Endopeptidase Complex - drug effects</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Proteasome Inhibitors - pharmacology</subject><subject>Protein Stability</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Thiazolidinediones - pharmacology</subject><subject>Transfection</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc9rVDEQx0NR2lo99V4CXgTZNcnLr3doQepWhYIe6jnMS-Z1U_a9bJO3hfWvN2XrUkUwlxnIhw8z8yXklLM5Z439MExzwbicCyEPyDFXQs0YE_LFvuf6iLwq5a52XLX6kBwJJVlrpDwm54vx53ZAuhiXMHrMhfYp02mJ9CYjTAOOE009vYIubymMgX5Pwxrpp1gQCr4mL3tYFXzzVE_Ij6vFzeWX2fW3z18vP17PvLR2mikT0IoQmAi2BQDGg5B9HzoLwLGtRVumNQMVhG7aTgjPOg-gmOGBi645IRc773rTDRh8nSrDyq1zHCBvXYLo_vwZ49LdpgcnG8WlMlXw7kmQ0_0Gy-SGWDyuVjBi2hTHjdH1WcX-j2ojWMu5biv69i_0Lm3yWC9RhS1vrGmMrtT7HeVzKiVjv5-bM_eYoBsm95igqwlW-uz5qnv2d2QVUDsA68EfImZXfMSaXYgZ_eRCiv8U_wIqOqd-</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Lukas, Jan</creator><creator>Pockrandt, Anne-Marie</creator><creator>Seemann, Susanne</creator><creator>Sharif, Muhammad</creator><creator>Runge, Franziska</creator><creator>Pohlers, Susann</creator><creator>Zheng, Chaonan</creator><creator>Gläser, Anne</creator><creator>Beller, Matthias</creator><creator>Rolfs, Arndt</creator><creator>Giese, Anne-Katrin</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Nature Publishing Group</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20150301</creationdate><title>Enzyme Enhancers for the Treatment of Fabry and Pompe Disease</title><author>Lukas, Jan ; Pockrandt, Anne-Marie ; Seemann, Susanne ; Sharif, Muhammad ; Runge, Franziska ; Pohlers, Susann ; Zheng, Chaonan ; Gläser, Anne ; Beller, Matthias ; Rolfs, Arndt ; Giese, Anne-Katrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-57de82dd02d89aaa01d24ffdb8aa1e9b8a680660a5d2639b22c0bcaa5071d12b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>1-Deoxynojirimycin - analogs & derivatives</topic><topic>1-Deoxynojirimycin - pharmacology</topic><topic>Acetylcysteine - analogs & derivatives</topic><topic>Acetylcysteine - pharmacology</topic><topic>alpha-Galactosidase - genetics</topic><topic>alpha-Galactosidase - metabolism</topic><topic>alpha-Glucosidases - genetics</topic><topic>alpha-Glucosidases - metabolism</topic><topic>Ambroxol - pharmacology</topic><topic>Antibodies</topic><topic>Bezafibrate - pharmacology</topic><topic>Disease</topic><topic>Endoplasmic reticulum</topic><topic>Enzyme Activators - pharmacology</topic><topic>Enzymes</topic><topic>Fabry Disease - drug therapy</topic><topic>Fabry Disease - enzymology</topic><topic>Gene Expression</topic><topic>Glycogen Storage Disease Type II - drug therapy</topic><topic>Glycogen Storage Disease Type II - enzymology</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Leupeptins - pharmacology</topic><topic>LSD</topic><topic>Lysergic acid diethylamide</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Mutation</topic><topic>Original</topic><topic>Pioglitazone</topic><topic>Plasmids - chemistry</topic><topic>Plasmids - metabolism</topic><topic>Proteasome Endopeptidase Complex - drug effects</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Proteasome Inhibitors - pharmacology</topic><topic>Protein Stability</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Thiazolidinediones - pharmacology</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lukas, Jan</creatorcontrib><creatorcontrib>Pockrandt, Anne-Marie</creatorcontrib><creatorcontrib>Seemann, Susanne</creatorcontrib><creatorcontrib>Sharif, Muhammad</creatorcontrib><creatorcontrib>Runge, Franziska</creatorcontrib><creatorcontrib>Pohlers, Susann</creatorcontrib><creatorcontrib>Zheng, Chaonan</creatorcontrib><creatorcontrib>Gläser, Anne</creatorcontrib><creatorcontrib>Beller, Matthias</creatorcontrib><creatorcontrib>Rolfs, Arndt</creatorcontrib><creatorcontrib>Giese, Anne-Katrin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lukas, Jan</au><au>Pockrandt, Anne-Marie</au><au>Seemann, Susanne</au><au>Sharif, Muhammad</au><au>Runge, Franziska</au><au>Pohlers, Susann</au><au>Zheng, Chaonan</au><au>Gläser, Anne</au><au>Beller, Matthias</au><au>Rolfs, Arndt</au><au>Giese, Anne-Katrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzyme Enhancers for the Treatment of Fabry and Pompe Disease</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>23</volume><issue>3</issue><spage>456</spage><epage>464</epage><pages>456-464</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Lysosomal storage disorders (LSD) are a group of heterogeneous diseases caused by compromised enzyme function leading to multiple organ failure. Therapeutic approaches involve enzyme replacement (ERT), which is effective for a substantial fraction of patients. However, there are still concerns about a number of issues including tissue penetrance, generation of host antibodies against the therapeutic enzyme, and financial aspects, which render this therapy suboptimal for many cases. Treatment with pharmacological chaperones (PC) was recognized as a possible alternative to ERT, because a great number of mutations do not completely abolish enzyme function, but rather trigger degradation in the endoplasmic reticulum. The theory behind PC is that they can stabilize enzymes with remaining function, avoid degradation and thereby ameliorate disease symptoms. We tested several compounds in order to identify novel small molecules that prevent premature degradation of the mutant lysosomal enzymes α-galactosidase A (for Fabry disease (FD)) and acid α-glucosidase (GAA) (for Pompe disease (PD)). We discovered that the expectorant Ambroxol when used in conjunction with known PC resulted in a significant enhancement of mutant α-galactosidase A and GAA activities. Rosiglitazone was effective on α-galactosidase A either as a monotherapy or when administered in combination with the PC 1-deoxygalactonojirimycin. We therefore propose both drugs as potential enhancers of pharmacological chaperones in FD and PD to improve current treatment strategies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25409744</pmid><doi>10.1038/mt.2014.224</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-0016 |
ispartof | Molecular therapy, 2015-03, Vol.23 (3), p.456-464 |
issn | 1525-0016 1525-0024 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4351457 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; PubMed Central; Alma/SFX Local Collection |
subjects | 1-Deoxynojirimycin - analogs & derivatives 1-Deoxynojirimycin - pharmacology Acetylcysteine - analogs & derivatives Acetylcysteine - pharmacology alpha-Galactosidase - genetics alpha-Galactosidase - metabolism alpha-Glucosidases - genetics alpha-Glucosidases - metabolism Ambroxol - pharmacology Antibodies Bezafibrate - pharmacology Disease Endoplasmic reticulum Enzyme Activators - pharmacology Enzymes Fabry Disease - drug therapy Fabry Disease - enzymology Gene Expression Glycogen Storage Disease Type II - drug therapy Glycogen Storage Disease Type II - enzymology HEK293 Cells Humans Leupeptins - pharmacology LSD Lysergic acid diethylamide Lysosomes - drug effects Lysosomes - metabolism Mutation Original Pioglitazone Plasmids - chemistry Plasmids - metabolism Proteasome Endopeptidase Complex - drug effects Proteasome Endopeptidase Complex - metabolism Proteasome Inhibitors - pharmacology Protein Stability Recombinant Proteins - genetics Recombinant Proteins - metabolism Thiazolidinediones - pharmacology Transfection |
title | Enzyme Enhancers for the Treatment of Fabry and Pompe Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzyme%20Enhancers%20for%20the%20Treatment%20of%20Fabry%20and%20Pompe%20Disease&rft.jtitle=Molecular%20therapy&rft.au=Lukas,%20Jan&rft.date=2015-03-01&rft.volume=23&rft.issue=3&rft.spage=456&rft.epage=464&rft.pages=456-464&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1038/mt.2014.224&rft_dat=%3Cproquest_pubme%3E1776666850%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791387376&rft_id=info:pmid/25409744&rft_els_id=S1525001616300594&rfr_iscdi=true |