Dry Olive Leaf Extract Counteracts L-Thyroxine-Induced Genotoxicity in Human Peripheral Blood Leukocytes In Vitro

The thyroid hormones change the rate of basal metabolism, modulating the consumption of oxygen and causing production of reactive oxygen species, which leads to the development of oxidative stress and DNA strand breaks. Olive (Olea europaea L.) leaf contains many potentially bioactive compounds, mak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oxidative medicine and cellular longevity 2015-01, Vol.2015 (2015), p.1-8
Hauptverfasser: Spremo-Potparević, Biljana, Bajić, Vladan, Djelic, Ninoslav, Čabarkapa, Andrea, Živković, Lada, Žukovec Topalović, Dijana, Dekanski, Dragana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The thyroid hormones change the rate of basal metabolism, modulating the consumption of oxygen and causing production of reactive oxygen species, which leads to the development of oxidative stress and DNA strand breaks. Olive (Olea europaea L.) leaf contains many potentially bioactive compounds, making it one of the most potent natural antioxidants. The objective of this study was to evaluate the genotoxicity of L-thyroxine and to investigate antioxidative and antigenotoxic potential of the standardized oleuropein-rich dry olive leaf extract (DOLE) against hydrogen peroxide and L-thyroxine-induced DNA damage in human peripheral blood leukocytes by using the comet assay. Various concentrations of the extract were tested with both DNA damage inducers, under two different experimental conditions, pretreatment and posttreatment. Results indicate that L-thyroxine exhibited genotoxic effect and that DOLE displayed protective effect against thyroxine-induced genotoxicity. The number of cells with DNA damage, was significantly reduced, in both pretreated and posttreated samples (P < 0.05). Comparing the beneficial effect of all tested concentrations of DOLE, in both experimental protocols, it appears that extract was more effective in reducing DNA damage in the pretreatment, exhibiting protective role against L-thyroxine effect. This feature of DOLE can be explained by its capacity to act as potent free radical scavenger.
ISSN:1942-0900
1942-0994
DOI:10.1155/2015/762192