Developmental-Like Bone Regeneration by Human Embryonic Stem Cell-Derived Mesenchymal Cells
The in vivo osteogenesis potential of mesenchymal-like cells derived from human embryonic stem cells (hESC-MCs) was evaluated in vivo by implantation on collagen/hydroxyapatite scaffolds into calvarial defects in immunodeficient mice. This study is novel because no osteogenic or chondrogenic differe...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2014-01, Vol.20 (1-2), p.365-377 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 377 |
---|---|
container_issue | 1-2 |
container_start_page | 365 |
container_title | Tissue engineering. Part A |
container_volume | 20 |
creator | Kuhn, Liisa T. Liu, Yongxing Boyd, Nolan L. Dennis, James E. Jiang, Xi Xin, Xiaonan Charles, Lyndon F. Wang, Liping Aguila, H. Leonardo Rowe, David W. Lichtler, Alexander C. Goldberg, A. Jon |
description | The
in vivo
osteogenesis potential of mesenchymal-like cells derived from human embryonic stem cells (hESC-MCs) was evaluated
in vivo
by implantation on collagen/hydroxyapatite scaffolds into calvarial defects in immunodeficient mice. This study is novel because no osteogenic or chondrogenic differentiation protocols were applied to the cells prior to implantation. After 6 weeks, X-ray, microCT, and histological analysis showed that the hESC-MCs had consistently formed a highly vascularized new bone that bridged the bone defect and seamlessly integrated with host bone. The implanted hESC-MCs differentiated
in situ
to functional hypertrophic chondrocytes, osteoblasts, and osteocytes forming new bone tissue via an endochondral ossification pathway. Evidence for the direct participation of the human cells in bone morphogenesis was verified by two separate assays: with Alu and by human mitochondrial antigen positive staining in conjunction with co-localized expression of human bone sialoprotein in histologically verified regions of new bone. The large volume of new bone in a calvarial defect and the direct participation of the hESC-MCs far exceeds that of previous studies and that of the control adult hMSCs. This study represents a key step forward for bone tissue engineering because of the large volume, vascularity, and reproducibility of new bone formation and the discovery that it is advantageous to not over-commit these progenitor cells to a particular lineage prior to implantation. The hESC-MCs were able to recapitulate the mesenchymal developmental pathway and were able to repair the bone defect semi-autonomously without preimplantation differentiation to osteo- or chondroprogenitors. |
doi_str_mv | 10.1089/ten.tea.2013.0321 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4350005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1676355592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-8911072b00ec3cb7732ffc654f68f4a986f49588675b4a42e918b7c7bd5fc4c43</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhgex2Fr9Ad7IgDfezJrvTG4E3VYrrAh-gOBFSLJn2tSZZE1mFvbfN-PWpfZGL0LCOc95OW_eqnqG0QKjVr0aISxGMAuCMF0gSvCD6gQrKhtK-feHhzfDx9XjnK8REkhI-ag6JlRxIgg5qX6cwRb6uBkgjKZvVv4n1G9jgPozXEKAZEYfQ2139cU0mFCfDzbtYvCu_jLCUC-h75szSH4L6_ojZAjuajeY_ncjP6mOOtNneHp7n1bf3p1_XV40q0_vPyzfrBrHUTs2rcIYSWIRAkedlZKSrnOCs060HTOqFR1TvG2F5JYZRkDh1kon7Zp3jjlGT6vXe93NZAdYu2IlmV5vkh9M2ulovP67E_yVvoxbzShHCPEi8PJWIMVfE-RRDz67YsEEiFPWWEhBOeeK_BtlCkkmFFIFfXEPvY5TCuUnCiUlJ1zSeXm8p1yKOSfoDntjpOeUdUm5HKPnlPWccpl5ftfwYeJPrAWQe2AumxB6DxbS-B_SN88ctzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477525734</pqid></control><display><type>article</type><title>Developmental-Like Bone Regeneration by Human Embryonic Stem Cell-Derived Mesenchymal Cells</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Kuhn, Liisa T. ; Liu, Yongxing ; Boyd, Nolan L. ; Dennis, James E. ; Jiang, Xi ; Xin, Xiaonan ; Charles, Lyndon F. ; Wang, Liping ; Aguila, H. Leonardo ; Rowe, David W. ; Lichtler, Alexander C. ; Goldberg, A. Jon</creator><creatorcontrib>Kuhn, Liisa T. ; Liu, Yongxing ; Boyd, Nolan L. ; Dennis, James E. ; Jiang, Xi ; Xin, Xiaonan ; Charles, Lyndon F. ; Wang, Liping ; Aguila, H. Leonardo ; Rowe, David W. ; Lichtler, Alexander C. ; Goldberg, A. Jon</creatorcontrib><description>The
in vivo
osteogenesis potential of mesenchymal-like cells derived from human embryonic stem cells (hESC-MCs) was evaluated
in vivo
by implantation on collagen/hydroxyapatite scaffolds into calvarial defects in immunodeficient mice. This study is novel because no osteogenic or chondrogenic differentiation protocols were applied to the cells prior to implantation. After 6 weeks, X-ray, microCT, and histological analysis showed that the hESC-MCs had consistently formed a highly vascularized new bone that bridged the bone defect and seamlessly integrated with host bone. The implanted hESC-MCs differentiated
in situ
to functional hypertrophic chondrocytes, osteoblasts, and osteocytes forming new bone tissue via an endochondral ossification pathway. Evidence for the direct participation of the human cells in bone morphogenesis was verified by two separate assays: with Alu and by human mitochondrial antigen positive staining in conjunction with co-localized expression of human bone sialoprotein in histologically verified regions of new bone. The large volume of new bone in a calvarial defect and the direct participation of the hESC-MCs far exceeds that of previous studies and that of the control adult hMSCs. This study represents a key step forward for bone tissue engineering because of the large volume, vascularity, and reproducibility of new bone formation and the discovery that it is advantageous to not over-commit these progenitor cells to a particular lineage prior to implantation. The hESC-MCs were able to recapitulate the mesenchymal developmental pathway and were able to repair the bone defect semi-autonomously without preimplantation differentiation to osteo- or chondroprogenitors.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2013.0321</identifier><identifier>PMID: 23952622</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Adult ; Animals ; Bone Regeneration - drug effects ; Bone Regeneration - physiology ; Bones ; Cell Differentiation - drug effects ; Cell Shape - drug effects ; Collagen - pharmacology ; Durapatite - pharmacology ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - drug effects ; Embryonic Stem Cells - metabolism ; Gene expression ; Humans ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - drug effects ; Mesenchymal Stromal Cells - metabolism ; Mice ; Morphogenesis - drug effects ; Original ; Original Articles ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Osteogenesis - drug effects ; Phenotype ; Prosthesis Implantation ; Regeneration - drug effects ; Skull - drug effects ; Skull - pathology ; Stem Cell Transplantation ; Stem cells ; Tissue engineering ; Tissue Scaffolds - chemistry</subject><ispartof>Tissue engineering. Part A, 2014-01, Vol.20 (1-2), p.365-377</ispartof><rights>2014, Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2014, Mary Ann Liebert, Inc.</rights><rights>Copyright 2014, Mary Ann Liebert, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-8911072b00ec3cb7732ffc654f68f4a986f49588675b4a42e918b7c7bd5fc4c43</citedby><cites>FETCH-LOGICAL-c508t-8911072b00ec3cb7732ffc654f68f4a986f49588675b4a42e918b7c7bd5fc4c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23952622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuhn, Liisa T.</creatorcontrib><creatorcontrib>Liu, Yongxing</creatorcontrib><creatorcontrib>Boyd, Nolan L.</creatorcontrib><creatorcontrib>Dennis, James E.</creatorcontrib><creatorcontrib>Jiang, Xi</creatorcontrib><creatorcontrib>Xin, Xiaonan</creatorcontrib><creatorcontrib>Charles, Lyndon F.</creatorcontrib><creatorcontrib>Wang, Liping</creatorcontrib><creatorcontrib>Aguila, H. Leonardo</creatorcontrib><creatorcontrib>Rowe, David W.</creatorcontrib><creatorcontrib>Lichtler, Alexander C.</creatorcontrib><creatorcontrib>Goldberg, A. Jon</creatorcontrib><title>Developmental-Like Bone Regeneration by Human Embryonic Stem Cell-Derived Mesenchymal Cells</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>The
in vivo
osteogenesis potential of mesenchymal-like cells derived from human embryonic stem cells (hESC-MCs) was evaluated
in vivo
by implantation on collagen/hydroxyapatite scaffolds into calvarial defects in immunodeficient mice. This study is novel because no osteogenic or chondrogenic differentiation protocols were applied to the cells prior to implantation. After 6 weeks, X-ray, microCT, and histological analysis showed that the hESC-MCs had consistently formed a highly vascularized new bone that bridged the bone defect and seamlessly integrated with host bone. The implanted hESC-MCs differentiated
in situ
to functional hypertrophic chondrocytes, osteoblasts, and osteocytes forming new bone tissue via an endochondral ossification pathway. Evidence for the direct participation of the human cells in bone morphogenesis was verified by two separate assays: with Alu and by human mitochondrial antigen positive staining in conjunction with co-localized expression of human bone sialoprotein in histologically verified regions of new bone. The large volume of new bone in a calvarial defect and the direct participation of the hESC-MCs far exceeds that of previous studies and that of the control adult hMSCs. This study represents a key step forward for bone tissue engineering because of the large volume, vascularity, and reproducibility of new bone formation and the discovery that it is advantageous to not over-commit these progenitor cells to a particular lineage prior to implantation. The hESC-MCs were able to recapitulate the mesenchymal developmental pathway and were able to repair the bone defect semi-autonomously without preimplantation differentiation to osteo- or chondroprogenitors.</description><subject>Adult</subject><subject>Animals</subject><subject>Bone Regeneration - drug effects</subject><subject>Bone Regeneration - physiology</subject><subject>Bones</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Shape - drug effects</subject><subject>Collagen - pharmacology</subject><subject>Durapatite - pharmacology</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - drug effects</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - drug effects</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>Mice</subject><subject>Morphogenesis - drug effects</subject><subject>Original</subject><subject>Original Articles</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Osteogenesis - drug effects</subject><subject>Phenotype</subject><subject>Prosthesis Implantation</subject><subject>Regeneration - drug effects</subject><subject>Skull - drug effects</subject><subject>Skull - pathology</subject><subject>Stem Cell Transplantation</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkV1rFDEUhgex2Fr9Ad7IgDfezJrvTG4E3VYrrAh-gOBFSLJn2tSZZE1mFvbfN-PWpfZGL0LCOc95OW_eqnqG0QKjVr0aISxGMAuCMF0gSvCD6gQrKhtK-feHhzfDx9XjnK8REkhI-ag6JlRxIgg5qX6cwRb6uBkgjKZvVv4n1G9jgPozXEKAZEYfQ2139cU0mFCfDzbtYvCu_jLCUC-h75szSH4L6_ojZAjuajeY_ncjP6mOOtNneHp7n1bf3p1_XV40q0_vPyzfrBrHUTs2rcIYSWIRAkedlZKSrnOCs060HTOqFR1TvG2F5JYZRkDh1kon7Zp3jjlGT6vXe93NZAdYu2IlmV5vkh9M2ulovP67E_yVvoxbzShHCPEi8PJWIMVfE-RRDz67YsEEiFPWWEhBOeeK_BtlCkkmFFIFfXEPvY5TCuUnCiUlJ1zSeXm8p1yKOSfoDntjpOeUdUm5HKPnlPWccpl5ftfwYeJPrAWQe2AumxB6DxbS-B_SN88ctzw</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Kuhn, Liisa T.</creator><creator>Liu, Yongxing</creator><creator>Boyd, Nolan L.</creator><creator>Dennis, James E.</creator><creator>Jiang, Xi</creator><creator>Xin, Xiaonan</creator><creator>Charles, Lyndon F.</creator><creator>Wang, Liping</creator><creator>Aguila, H. Leonardo</creator><creator>Rowe, David W.</creator><creator>Lichtler, Alexander C.</creator><creator>Goldberg, A. Jon</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Developmental-Like Bone Regeneration by Human Embryonic Stem Cell-Derived Mesenchymal Cells</title><author>Kuhn, Liisa T. ; Liu, Yongxing ; Boyd, Nolan L. ; Dennis, James E. ; Jiang, Xi ; Xin, Xiaonan ; Charles, Lyndon F. ; Wang, Liping ; Aguila, H. Leonardo ; Rowe, David W. ; Lichtler, Alexander C. ; Goldberg, A. Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-8911072b00ec3cb7732ffc654f68f4a986f49588675b4a42e918b7c7bd5fc4c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Animals</topic><topic>Bone Regeneration - drug effects</topic><topic>Bone Regeneration - physiology</topic><topic>Bones</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Shape - drug effects</topic><topic>Collagen - pharmacology</topic><topic>Durapatite - pharmacology</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - drug effects</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - drug effects</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>Mice</topic><topic>Morphogenesis - drug effects</topic><topic>Original</topic><topic>Original Articles</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Osteogenesis - drug effects</topic><topic>Phenotype</topic><topic>Prosthesis Implantation</topic><topic>Regeneration - drug effects</topic><topic>Skull - drug effects</topic><topic>Skull - pathology</topic><topic>Stem Cell Transplantation</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuhn, Liisa T.</creatorcontrib><creatorcontrib>Liu, Yongxing</creatorcontrib><creatorcontrib>Boyd, Nolan L.</creatorcontrib><creatorcontrib>Dennis, James E.</creatorcontrib><creatorcontrib>Jiang, Xi</creatorcontrib><creatorcontrib>Xin, Xiaonan</creatorcontrib><creatorcontrib>Charles, Lyndon F.</creatorcontrib><creatorcontrib>Wang, Liping</creatorcontrib><creatorcontrib>Aguila, H. Leonardo</creatorcontrib><creatorcontrib>Rowe, David W.</creatorcontrib><creatorcontrib>Lichtler, Alexander C.</creatorcontrib><creatorcontrib>Goldberg, A. Jon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuhn, Liisa T.</au><au>Liu, Yongxing</au><au>Boyd, Nolan L.</au><au>Dennis, James E.</au><au>Jiang, Xi</au><au>Xin, Xiaonan</au><au>Charles, Lyndon F.</au><au>Wang, Liping</au><au>Aguila, H. Leonardo</au><au>Rowe, David W.</au><au>Lichtler, Alexander C.</au><au>Goldberg, A. Jon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developmental-Like Bone Regeneration by Human Embryonic Stem Cell-Derived Mesenchymal Cells</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>20</volume><issue>1-2</issue><spage>365</spage><epage>377</epage><pages>365-377</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>The
in vivo
osteogenesis potential of mesenchymal-like cells derived from human embryonic stem cells (hESC-MCs) was evaluated
in vivo
by implantation on collagen/hydroxyapatite scaffolds into calvarial defects in immunodeficient mice. This study is novel because no osteogenic or chondrogenic differentiation protocols were applied to the cells prior to implantation. After 6 weeks, X-ray, microCT, and histological analysis showed that the hESC-MCs had consistently formed a highly vascularized new bone that bridged the bone defect and seamlessly integrated with host bone. The implanted hESC-MCs differentiated
in situ
to functional hypertrophic chondrocytes, osteoblasts, and osteocytes forming new bone tissue via an endochondral ossification pathway. Evidence for the direct participation of the human cells in bone morphogenesis was verified by two separate assays: with Alu and by human mitochondrial antigen positive staining in conjunction with co-localized expression of human bone sialoprotein in histologically verified regions of new bone. The large volume of new bone in a calvarial defect and the direct participation of the hESC-MCs far exceeds that of previous studies and that of the control adult hMSCs. This study represents a key step forward for bone tissue engineering because of the large volume, vascularity, and reproducibility of new bone formation and the discovery that it is advantageous to not over-commit these progenitor cells to a particular lineage prior to implantation. The hESC-MCs were able to recapitulate the mesenchymal developmental pathway and were able to repair the bone defect semi-autonomously without preimplantation differentiation to osteo- or chondroprogenitors.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>23952622</pmid><doi>10.1089/ten.tea.2013.0321</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3341 |
ispartof | Tissue engineering. Part A, 2014-01, Vol.20 (1-2), p.365-377 |
issn | 1937-3341 1937-335X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4350005 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Adult Animals Bone Regeneration - drug effects Bone Regeneration - physiology Bones Cell Differentiation - drug effects Cell Shape - drug effects Collagen - pharmacology Durapatite - pharmacology Embryonic Stem Cells - cytology Embryonic Stem Cells - drug effects Embryonic Stem Cells - metabolism Gene expression Humans Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - drug effects Mesenchymal Stromal Cells - metabolism Mice Morphogenesis - drug effects Original Original Articles Osteoblasts - cytology Osteoblasts - drug effects Osteoblasts - metabolism Osteogenesis - drug effects Phenotype Prosthesis Implantation Regeneration - drug effects Skull - drug effects Skull - pathology Stem Cell Transplantation Stem cells Tissue engineering Tissue Scaffolds - chemistry |
title | Developmental-Like Bone Regeneration by Human Embryonic Stem Cell-Derived Mesenchymal Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developmental-Like%20Bone%20Regeneration%20by%20Human%20Embryonic%20Stem%20Cell-Derived%20Mesenchymal%20Cells&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Kuhn,%20Liisa%20T.&rft.date=2014-01-01&rft.volume=20&rft.issue=1-2&rft.spage=365&rft.epage=377&rft.pages=365-377&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2013.0321&rft_dat=%3Cproquest_pubme%3E1676355592%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477525734&rft_id=info:pmid/23952622&rfr_iscdi=true |