Inverse Size Scaling of the Nucleolus by a Concentration-Dependent Phase Transition

Just as organ size typically increases with body size, the size of intracellular structures changes as cells grow and divide. Indeed, many organelles, such as the nucleus [1, 2], mitochondria [3], mitotic spindle [4, 5], and centrosome [6], exhibit size scaling, a phenomenon in which organelle size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2015-03, Vol.25 (5), p.641-646
Hauptverfasser: Weber, Stephanie C., Brangwynne, Clifford P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 646
container_issue 5
container_start_page 641
container_title Current biology
container_volume 25
creator Weber, Stephanie C.
Brangwynne, Clifford P.
description Just as organ size typically increases with body size, the size of intracellular structures changes as cells grow and divide. Indeed, many organelles, such as the nucleus [1, 2], mitochondria [3], mitotic spindle [4, 5], and centrosome [6], exhibit size scaling, a phenomenon in which organelle size depends linearly on cell size. However, the mechanisms of organelle size scaling remain unclear. Here, we show that the size of the nucleolus, a membraneless organelle important for cell-size homeostasis [7], is coupled to cell size by an intracellular phase transition. We find that nucleolar size directly scales with cell size in early C. elegans embryos. Surprisingly, however, when embryo size is altered, we observe inverse scaling: nucleolar size increases in small cells and decreases in large cells. We demonstrate that this seemingly contradictory result arises from maternal loading of a fixed number rather than a fixed concentration of nucleolar components, which condense into nucleoli only above a threshold concentration. Our results suggest that the physics of phase transitions can dictate whether an organelle assembles, and, if so, its size, providing a mechanistic link between organelle assembly and cell size. Since the nucleolus is known to play a key role in cell growth, this biophysical readout of cell size could provide a novel feedback mechanism for growth control. [Display omitted] •Nucleolar size scales directly with cell size during development•Nucleolar size scales inversely with cell size across RNAi conditions•Nucleolar size and assembly depend on the concentration of components•Direct and inverse scaling regimes can be explained by a phase transition model Weber and Brangwynne show that nucleolar size is determined by the concentration of maternally loaded components, which condense into nucleoli only above a threshold concentration. This work suggests that intracellular phase transitions may provide a general mechanism for organelle assembly that inherently couples organelle size with cell size.
doi_str_mv 10.1016/j.cub.2015.01.012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4348177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982215000147</els_id><sourcerecordid>1660926613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-9e619f89c78135313822c186f3694e3f9b9c0df75c09175a1e6cef1c1e1e32863</originalsourceid><addsrcrecordid>eNp9UV1rGzEQFKUldj5-QF_KPfblXK10p5MoFIKTpoHQBJI8C1m3Z8ucJUe6M6S_vjJOQ_MSWHYROzsaZgj5DHQGFMS39cyOixmjUM8o5GIfyBRko0paVfVHMqVK0FJJxibkOKU1zQipxBGZsLqhrJZ8Su6v_Q5jwuLe_cnNmt75ZRG6Ylhh8Xu0PYZ-TMXiuTDFPHiLfohmcMGXF7hF3-Z3cbcymeAhGp_cfnVKPnWmT3j2Mk_I48_Lh_mv8ub26np-flPaGpqhVChAdVLZRgKvOfAs1IIUHReqQt6phbK07ZraUgVNbQCFxQ4sICBnUvAT8uPAux0XG2wP2nq9jW5j4rMOxum3G-9Wehl2uuKVhKbJBF9fCGJ4GjENeuOSxb43HsOYNAhBFRMCeIbCAWpjSCli9_oNUL0PQ691DkPvw9AUcrF88-V_fa8X_9zPgO8HAGaXdg6jTtZhNrl1Ee2g2-Deof8L99Waxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660926613</pqid></control><display><type>article</type><title>Inverse Size Scaling of the Nucleolus by a Concentration-Dependent Phase Transition</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Weber, Stephanie C. ; Brangwynne, Clifford P.</creator><creatorcontrib>Weber, Stephanie C. ; Brangwynne, Clifford P.</creatorcontrib><description>Just as organ size typically increases with body size, the size of intracellular structures changes as cells grow and divide. Indeed, many organelles, such as the nucleus [1, 2], mitochondria [3], mitotic spindle [4, 5], and centrosome [6], exhibit size scaling, a phenomenon in which organelle size depends linearly on cell size. However, the mechanisms of organelle size scaling remain unclear. Here, we show that the size of the nucleolus, a membraneless organelle important for cell-size homeostasis [7], is coupled to cell size by an intracellular phase transition. We find that nucleolar size directly scales with cell size in early C. elegans embryos. Surprisingly, however, when embryo size is altered, we observe inverse scaling: nucleolar size increases in small cells and decreases in large cells. We demonstrate that this seemingly contradictory result arises from maternal loading of a fixed number rather than a fixed concentration of nucleolar components, which condense into nucleoli only above a threshold concentration. Our results suggest that the physics of phase transitions can dictate whether an organelle assembles, and, if so, its size, providing a mechanistic link between organelle assembly and cell size. Since the nucleolus is known to play a key role in cell growth, this biophysical readout of cell size could provide a novel feedback mechanism for growth control. [Display omitted] •Nucleolar size scales directly with cell size during development•Nucleolar size scales inversely with cell size across RNAi conditions•Nucleolar size and assembly depend on the concentration of components•Direct and inverse scaling regimes can be explained by a phase transition model Weber and Brangwynne show that nucleolar size is determined by the concentration of maternally loaded components, which condense into nucleoli only above a threshold concentration. This work suggests that intracellular phase transitions may provide a general mechanism for organelle assembly that inherently couples organelle size with cell size.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2015.01.012</identifier><identifier>PMID: 25702583</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Caenorhabditis elegans - cytology ; Caenorhabditis elegans - embryology ; Cell Nucleolus - physiology ; Cell Nucleolus - ultrastructure ; Cell Size ; Feedback, Physiological ; Fluorescence ; Image Processing, Computer-Assisted ; Microscopy, Confocal ; Models, Biological ; RNA Interference</subject><ispartof>Current biology, 2015-03, Vol.25 (5), p.641-646</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>2015 Elsevier Ltd. All rights reserved. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-9e619f89c78135313822c186f3694e3f9b9c0df75c09175a1e6cef1c1e1e32863</citedby><cites>FETCH-LOGICAL-c517t-9e619f89c78135313822c186f3694e3f9b9c0df75c09175a1e6cef1c1e1e32863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cub.2015.01.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25702583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, Stephanie C.</creatorcontrib><creatorcontrib>Brangwynne, Clifford P.</creatorcontrib><title>Inverse Size Scaling of the Nucleolus by a Concentration-Dependent Phase Transition</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Just as organ size typically increases with body size, the size of intracellular structures changes as cells grow and divide. Indeed, many organelles, such as the nucleus [1, 2], mitochondria [3], mitotic spindle [4, 5], and centrosome [6], exhibit size scaling, a phenomenon in which organelle size depends linearly on cell size. However, the mechanisms of organelle size scaling remain unclear. Here, we show that the size of the nucleolus, a membraneless organelle important for cell-size homeostasis [7], is coupled to cell size by an intracellular phase transition. We find that nucleolar size directly scales with cell size in early C. elegans embryos. Surprisingly, however, when embryo size is altered, we observe inverse scaling: nucleolar size increases in small cells and decreases in large cells. We demonstrate that this seemingly contradictory result arises from maternal loading of a fixed number rather than a fixed concentration of nucleolar components, which condense into nucleoli only above a threshold concentration. Our results suggest that the physics of phase transitions can dictate whether an organelle assembles, and, if so, its size, providing a mechanistic link between organelle assembly and cell size. Since the nucleolus is known to play a key role in cell growth, this biophysical readout of cell size could provide a novel feedback mechanism for growth control. [Display omitted] •Nucleolar size scales directly with cell size during development•Nucleolar size scales inversely with cell size across RNAi conditions•Nucleolar size and assembly depend on the concentration of components•Direct and inverse scaling regimes can be explained by a phase transition model Weber and Brangwynne show that nucleolar size is determined by the concentration of maternally loaded components, which condense into nucleoli only above a threshold concentration. This work suggests that intracellular phase transitions may provide a general mechanism for organelle assembly that inherently couples organelle size with cell size.</description><subject>Animals</subject><subject>Caenorhabditis elegans - cytology</subject><subject>Caenorhabditis elegans - embryology</subject><subject>Cell Nucleolus - physiology</subject><subject>Cell Nucleolus - ultrastructure</subject><subject>Cell Size</subject><subject>Feedback, Physiological</subject><subject>Fluorescence</subject><subject>Image Processing, Computer-Assisted</subject><subject>Microscopy, Confocal</subject><subject>Models, Biological</subject><subject>RNA Interference</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UV1rGzEQFKUldj5-QF_KPfblXK10p5MoFIKTpoHQBJI8C1m3Z8ucJUe6M6S_vjJOQ_MSWHYROzsaZgj5DHQGFMS39cyOixmjUM8o5GIfyBRko0paVfVHMqVK0FJJxibkOKU1zQipxBGZsLqhrJZ8Su6v_Q5jwuLe_cnNmt75ZRG6Ylhh8Xu0PYZ-TMXiuTDFPHiLfohmcMGXF7hF3-Z3cbcymeAhGp_cfnVKPnWmT3j2Mk_I48_Lh_mv8ub26np-flPaGpqhVChAdVLZRgKvOfAs1IIUHReqQt6phbK07ZraUgVNbQCFxQ4sICBnUvAT8uPAux0XG2wP2nq9jW5j4rMOxum3G-9Wehl2uuKVhKbJBF9fCGJ4GjENeuOSxb43HsOYNAhBFRMCeIbCAWpjSCli9_oNUL0PQ691DkPvw9AUcrF88-V_fa8X_9zPgO8HAGaXdg6jTtZhNrl1Ee2g2-Deof8L99Waxg</recordid><startdate>20150302</startdate><enddate>20150302</enddate><creator>Weber, Stephanie C.</creator><creator>Brangwynne, Clifford P.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150302</creationdate><title>Inverse Size Scaling of the Nucleolus by a Concentration-Dependent Phase Transition</title><author>Weber, Stephanie C. ; Brangwynne, Clifford P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-9e619f89c78135313822c186f3694e3f9b9c0df75c09175a1e6cef1c1e1e32863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans - cytology</topic><topic>Caenorhabditis elegans - embryology</topic><topic>Cell Nucleolus - physiology</topic><topic>Cell Nucleolus - ultrastructure</topic><topic>Cell Size</topic><topic>Feedback, Physiological</topic><topic>Fluorescence</topic><topic>Image Processing, Computer-Assisted</topic><topic>Microscopy, Confocal</topic><topic>Models, Biological</topic><topic>RNA Interference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Stephanie C.</creatorcontrib><creatorcontrib>Brangwynne, Clifford P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Stephanie C.</au><au>Brangwynne, Clifford P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Size Scaling of the Nucleolus by a Concentration-Dependent Phase Transition</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2015-03-02</date><risdate>2015</risdate><volume>25</volume><issue>5</issue><spage>641</spage><epage>646</epage><pages>641-646</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Just as organ size typically increases with body size, the size of intracellular structures changes as cells grow and divide. Indeed, many organelles, such as the nucleus [1, 2], mitochondria [3], mitotic spindle [4, 5], and centrosome [6], exhibit size scaling, a phenomenon in which organelle size depends linearly on cell size. However, the mechanisms of organelle size scaling remain unclear. Here, we show that the size of the nucleolus, a membraneless organelle important for cell-size homeostasis [7], is coupled to cell size by an intracellular phase transition. We find that nucleolar size directly scales with cell size in early C. elegans embryos. Surprisingly, however, when embryo size is altered, we observe inverse scaling: nucleolar size increases in small cells and decreases in large cells. We demonstrate that this seemingly contradictory result arises from maternal loading of a fixed number rather than a fixed concentration of nucleolar components, which condense into nucleoli only above a threshold concentration. Our results suggest that the physics of phase transitions can dictate whether an organelle assembles, and, if so, its size, providing a mechanistic link between organelle assembly and cell size. Since the nucleolus is known to play a key role in cell growth, this biophysical readout of cell size could provide a novel feedback mechanism for growth control. [Display omitted] •Nucleolar size scales directly with cell size during development•Nucleolar size scales inversely with cell size across RNAi conditions•Nucleolar size and assembly depend on the concentration of components•Direct and inverse scaling regimes can be explained by a phase transition model Weber and Brangwynne show that nucleolar size is determined by the concentration of maternally loaded components, which condense into nucleoli only above a threshold concentration. This work suggests that intracellular phase transitions may provide a general mechanism for organelle assembly that inherently couples organelle size with cell size.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25702583</pmid><doi>10.1016/j.cub.2015.01.012</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2015-03, Vol.25 (5), p.641-646
issn 0960-9822
1879-0445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4348177
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals
subjects Animals
Caenorhabditis elegans - cytology
Caenorhabditis elegans - embryology
Cell Nucleolus - physiology
Cell Nucleolus - ultrastructure
Cell Size
Feedback, Physiological
Fluorescence
Image Processing, Computer-Assisted
Microscopy, Confocal
Models, Biological
RNA Interference
title Inverse Size Scaling of the Nucleolus by a Concentration-Dependent Phase Transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Size%20Scaling%20of%20the%20Nucleolus%20by%20a%20Concentration-Dependent%20Phase%20Transition&rft.jtitle=Current%20biology&rft.au=Weber,%20Stephanie%C2%A0C.&rft.date=2015-03-02&rft.volume=25&rft.issue=5&rft.spage=641&rft.epage=646&rft.pages=641-646&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2015.01.012&rft_dat=%3Cproquest_pubme%3E1660926613%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660926613&rft_id=info:pmid/25702583&rft_els_id=S0960982215000147&rfr_iscdi=true