Macrophage polarization in response to ECM coated polypropylene mesh

Abstract The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2014-08, Vol.35 (25), p.6838-6849
Hauptverfasser: Wolf, Matthew T, Dearth, Christopher L, Ranallo, Christian A, LoPresti, Samuel T, Carey, Lisa E, Daly, Kerry A, Brown, Bryan N, Badylak, Stephen F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6849
container_issue 25
container_start_page 6838
container_title Biomaterials
container_volume 35
creator Wolf, Matthew T
Dearth, Christopher L
Ranallo, Christian A
LoPresti, Samuel T
Carey, Lisa E
Daly, Kerry A
Brown, Bryan N
Badylak, Stephen F
description Abstract The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies have shown that an extracellular matrix (ECM) hydrogel coating of polypropylene mesh reduces the intensity of the foreign body reaction, though the mode of action is unknown. Macrophage participation plays a key role in the development of the foreign body reaction to biomaterials, and therefore the present study investigated macrophage polarization following mesh implantation. Spatiotemporal analysis of macrophage polarization was conducted in response to uncoated polypropylene mesh and mesh coated with hydrated and dry forms of ECM hydrogels derived from either dermis or urinary bladder. Pro-inflammatory M1 macrophages (CD86+/CD68+), alternatively activated M2 macrophages (CD206+/CD68+), and foreign body giant cells were quantified between 3 and 35 days. Uncoated polypropylene mesh elicited a dominant M1 response at the mesh fiber surface, which was decreased by each ECM coating type beginning at 7 days. The diminished M1 response was accompanied by a reduction in the number of foreign body giant cells at 14 and 35 days, though there was a minimal effect upon the number of M2 macrophages at any time. These results show that ECM coatings attenuate the M1 macrophage response and increase the M2/M1 ratio to polypropylene mesh in vivo.
doi_str_mv 10.1016/j.biomaterials.2014.04.115
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4347831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961214005286</els_id><sourcerecordid>1627973147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c707t-92342e020e58cce15bd62345cbf0c077fac8a99d6d78d2c3b7234470e4866b1d3</originalsourceid><addsrcrecordid>eNqNUk1v1DAQtRCILoW_gCJOXJKOHcdOOFRC20IrteoBOFuOM9v1ktjBzlba_nocbalaLt2TZb-P8cw8Qj5RKChQcbIpWusHPWGwuo8FA8oL4AWl1SuyoLWs86qB6jVZJIDljaDsiLyLcQPpDpy9JUeM15WgwBfk7Fqb4Me1vsVs9L0O9l5P1rvMuixgHL2LmE0-O19eZ8anmt1M241Js-vRYTZgXL8nb1bpJ_jh4Twmv76d_1xe5Fc33y-XX69yI0FOecNKzhAYYFUbg7RqO5GeKtOuwICUK21q3TSd6GTdMVO2MqFcAvJaiJZ25TE53fuO23bAzqCbgu7VGOygw055bdVzxNm1uvV3ipdc1iVNBp8fDIL_s8U4qcFGg32vHfptVCzNt6SCNvJFKhWcJXoa5AFUJpMj5Qe4Vqlj0TCYXb_sqWk_MQZcPfZJQc05UBv1NAdqzoECrlIOkvjj00k9Sv8tPhHO9gRM-7qzGFQ0Fp3BzgY0k-q8PazO6X82prfOGt3_xh3Gjd8GN2uoikyB-jEncg5kCiJUrBblXxsm314</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534469205</pqid></control><display><type>article</type><title>Macrophage polarization in response to ECM coated polypropylene mesh</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wolf, Matthew T ; Dearth, Christopher L ; Ranallo, Christian A ; LoPresti, Samuel T ; Carey, Lisa E ; Daly, Kerry A ; Brown, Bryan N ; Badylak, Stephen F</creator><creatorcontrib>Wolf, Matthew T ; Dearth, Christopher L ; Ranallo, Christian A ; LoPresti, Samuel T ; Carey, Lisa E ; Daly, Kerry A ; Brown, Bryan N ; Badylak, Stephen F</creatorcontrib><description>Abstract The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies have shown that an extracellular matrix (ECM) hydrogel coating of polypropylene mesh reduces the intensity of the foreign body reaction, though the mode of action is unknown. Macrophage participation plays a key role in the development of the foreign body reaction to biomaterials, and therefore the present study investigated macrophage polarization following mesh implantation. Spatiotemporal analysis of macrophage polarization was conducted in response to uncoated polypropylene mesh and mesh coated with hydrated and dry forms of ECM hydrogels derived from either dermis or urinary bladder. Pro-inflammatory M1 macrophages (CD86+/CD68+), alternatively activated M2 macrophages (CD206+/CD68+), and foreign body giant cells were quantified between 3 and 35 days. Uncoated polypropylene mesh elicited a dominant M1 response at the mesh fiber surface, which was decreased by each ECM coating type beginning at 7 days. The diminished M1 response was accompanied by a reduction in the number of foreign body giant cells at 14 and 35 days, though there was a minimal effect upon the number of M2 macrophages at any time. These results show that ECM coatings attenuate the M1 macrophage response and increase the M2/M1 ratio to polypropylene mesh in vivo.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2014.04.115</identifier><identifier>PMID: 24856104</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; biocompatible materials ; Biomaterials ; Biomedical materials ; bladder ; Coated Materials, Biocompatible - chemistry ; Coating ; coatings ; Dentistry ; dermis ; ECM (extracellular matrix) ; Electrochemical machining ; extracellular matrix ; Extracellular Matrix - chemistry ; Female ; fibrosis ; Fibrosis - pathology ; Foreign bodies ; Foreign-Body Reaction ; giant cells ; Hydrogel ; hydrogels ; Hydrogels - chemistry ; Immunity, Innate - drug effects ; Macrophage ; Macrophages ; Macrophages - chemistry ; Materials Testing ; mechanism of action ; Polypropylene ; Polypropylenes ; Polypropylenes - chemistry ; Prostheses and Implants ; Rats ; Rats, Sprague-Dawley ; Surgical implants ; Surgical Mesh ; Ventral hernia</subject><ispartof>Biomaterials, 2014-08, Vol.35 (25), p.6838-6849</ispartof><rights>Elsevier Ltd</rights><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>2014 Published by Elsevier Ltd. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c707t-92342e020e58cce15bd62345cbf0c077fac8a99d6d78d2c3b7234470e4866b1d3</citedby><cites>FETCH-LOGICAL-c707t-92342e020e58cce15bd62345cbf0c077fac8a99d6d78d2c3b7234470e4866b1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961214005286$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24856104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolf, Matthew T</creatorcontrib><creatorcontrib>Dearth, Christopher L</creatorcontrib><creatorcontrib>Ranallo, Christian A</creatorcontrib><creatorcontrib>LoPresti, Samuel T</creatorcontrib><creatorcontrib>Carey, Lisa E</creatorcontrib><creatorcontrib>Daly, Kerry A</creatorcontrib><creatorcontrib>Brown, Bryan N</creatorcontrib><creatorcontrib>Badylak, Stephen F</creatorcontrib><title>Macrophage polarization in response to ECM coated polypropylene mesh</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies have shown that an extracellular matrix (ECM) hydrogel coating of polypropylene mesh reduces the intensity of the foreign body reaction, though the mode of action is unknown. Macrophage participation plays a key role in the development of the foreign body reaction to biomaterials, and therefore the present study investigated macrophage polarization following mesh implantation. Spatiotemporal analysis of macrophage polarization was conducted in response to uncoated polypropylene mesh and mesh coated with hydrated and dry forms of ECM hydrogels derived from either dermis or urinary bladder. Pro-inflammatory M1 macrophages (CD86+/CD68+), alternatively activated M2 macrophages (CD206+/CD68+), and foreign body giant cells were quantified between 3 and 35 days. Uncoated polypropylene mesh elicited a dominant M1 response at the mesh fiber surface, which was decreased by each ECM coating type beginning at 7 days. The diminished M1 response was accompanied by a reduction in the number of foreign body giant cells at 14 and 35 days, though there was a minimal effect upon the number of M2 macrophages at any time. These results show that ECM coatings attenuate the M1 macrophage response and increase the M2/M1 ratio to polypropylene mesh in vivo.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>biocompatible materials</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>bladder</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coating</subject><subject>coatings</subject><subject>Dentistry</subject><subject>dermis</subject><subject>ECM (extracellular matrix)</subject><subject>Electrochemical machining</subject><subject>extracellular matrix</subject><subject>Extracellular Matrix - chemistry</subject><subject>Female</subject><subject>fibrosis</subject><subject>Fibrosis - pathology</subject><subject>Foreign bodies</subject><subject>Foreign-Body Reaction</subject><subject>giant cells</subject><subject>Hydrogel</subject><subject>hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Immunity, Innate - drug effects</subject><subject>Macrophage</subject><subject>Macrophages</subject><subject>Macrophages - chemistry</subject><subject>Materials Testing</subject><subject>mechanism of action</subject><subject>Polypropylene</subject><subject>Polypropylenes</subject><subject>Polypropylenes - chemistry</subject><subject>Prostheses and Implants</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Surgical implants</subject><subject>Surgical Mesh</subject><subject>Ventral hernia</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1DAQtRCILoW_gCJOXJKOHcdOOFRC20IrteoBOFuOM9v1ktjBzlba_nocbalaLt2TZb-P8cw8Qj5RKChQcbIpWusHPWGwuo8FA8oL4AWl1SuyoLWs86qB6jVZJIDljaDsiLyLcQPpDpy9JUeM15WgwBfk7Fqb4Me1vsVs9L0O9l5P1rvMuixgHL2LmE0-O19eZ8anmt1M241Js-vRYTZgXL8nb1bpJ_jh4Twmv76d_1xe5Fc33y-XX69yI0FOecNKzhAYYFUbg7RqO5GeKtOuwICUK21q3TSd6GTdMVO2MqFcAvJaiJZ25TE53fuO23bAzqCbgu7VGOygw055bdVzxNm1uvV3ipdc1iVNBp8fDIL_s8U4qcFGg32vHfptVCzNt6SCNvJFKhWcJXoa5AFUJpMj5Qe4Vqlj0TCYXb_sqWk_MQZcPfZJQc05UBv1NAdqzoECrlIOkvjj00k9Sv8tPhHO9gRM-7qzGFQ0Fp3BzgY0k-q8PazO6X82prfOGt3_xh3Gjd8GN2uoikyB-jEncg5kCiJUrBblXxsm314</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Wolf, Matthew T</creator><creator>Dearth, Christopher L</creator><creator>Ranallo, Christian A</creator><creator>LoPresti, Samuel T</creator><creator>Carey, Lisa E</creator><creator>Daly, Kerry A</creator><creator>Brown, Bryan N</creator><creator>Badylak, Stephen F</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140801</creationdate><title>Macrophage polarization in response to ECM coated polypropylene mesh</title><author>Wolf, Matthew T ; Dearth, Christopher L ; Ranallo, Christian A ; LoPresti, Samuel T ; Carey, Lisa E ; Daly, Kerry A ; Brown, Bryan N ; Badylak, Stephen F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c707t-92342e020e58cce15bd62345cbf0c077fac8a99d6d78d2c3b7234470e4866b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>biocompatible materials</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>bladder</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coating</topic><topic>coatings</topic><topic>Dentistry</topic><topic>dermis</topic><topic>ECM (extracellular matrix)</topic><topic>Electrochemical machining</topic><topic>extracellular matrix</topic><topic>Extracellular Matrix - chemistry</topic><topic>Female</topic><topic>fibrosis</topic><topic>Fibrosis - pathology</topic><topic>Foreign bodies</topic><topic>Foreign-Body Reaction</topic><topic>giant cells</topic><topic>Hydrogel</topic><topic>hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Immunity, Innate - drug effects</topic><topic>Macrophage</topic><topic>Macrophages</topic><topic>Macrophages - chemistry</topic><topic>Materials Testing</topic><topic>mechanism of action</topic><topic>Polypropylene</topic><topic>Polypropylenes</topic><topic>Polypropylenes - chemistry</topic><topic>Prostheses and Implants</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Surgical implants</topic><topic>Surgical Mesh</topic><topic>Ventral hernia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Matthew T</creatorcontrib><creatorcontrib>Dearth, Christopher L</creatorcontrib><creatorcontrib>Ranallo, Christian A</creatorcontrib><creatorcontrib>LoPresti, Samuel T</creatorcontrib><creatorcontrib>Carey, Lisa E</creatorcontrib><creatorcontrib>Daly, Kerry A</creatorcontrib><creatorcontrib>Brown, Bryan N</creatorcontrib><creatorcontrib>Badylak, Stephen F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Matthew T</au><au>Dearth, Christopher L</au><au>Ranallo, Christian A</au><au>LoPresti, Samuel T</au><au>Carey, Lisa E</au><au>Daly, Kerry A</au><au>Brown, Bryan N</au><au>Badylak, Stephen F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macrophage polarization in response to ECM coated polypropylene mesh</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>35</volume><issue>25</issue><spage>6838</spage><epage>6849</epage><pages>6838-6849</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies have shown that an extracellular matrix (ECM) hydrogel coating of polypropylene mesh reduces the intensity of the foreign body reaction, though the mode of action is unknown. Macrophage participation plays a key role in the development of the foreign body reaction to biomaterials, and therefore the present study investigated macrophage polarization following mesh implantation. Spatiotemporal analysis of macrophage polarization was conducted in response to uncoated polypropylene mesh and mesh coated with hydrated and dry forms of ECM hydrogels derived from either dermis or urinary bladder. Pro-inflammatory M1 macrophages (CD86+/CD68+), alternatively activated M2 macrophages (CD206+/CD68+), and foreign body giant cells were quantified between 3 and 35 days. Uncoated polypropylene mesh elicited a dominant M1 response at the mesh fiber surface, which was decreased by each ECM coating type beginning at 7 days. The diminished M1 response was accompanied by a reduction in the number of foreign body giant cells at 14 and 35 days, though there was a minimal effect upon the number of M2 macrophages at any time. These results show that ECM coatings attenuate the M1 macrophage response and increase the M2/M1 ratio to polypropylene mesh in vivo.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>24856104</pmid><doi>10.1016/j.biomaterials.2014.04.115</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2014-08, Vol.35 (25), p.6838-6849
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4347831
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Animals
biocompatible materials
Biomaterials
Biomedical materials
bladder
Coated Materials, Biocompatible - chemistry
Coating
coatings
Dentistry
dermis
ECM (extracellular matrix)
Electrochemical machining
extracellular matrix
Extracellular Matrix - chemistry
Female
fibrosis
Fibrosis - pathology
Foreign bodies
Foreign-Body Reaction
giant cells
Hydrogel
hydrogels
Hydrogels - chemistry
Immunity, Innate - drug effects
Macrophage
Macrophages
Macrophages - chemistry
Materials Testing
mechanism of action
Polypropylene
Polypropylenes
Polypropylenes - chemistry
Prostheses and Implants
Rats
Rats, Sprague-Dawley
Surgical implants
Surgical Mesh
Ventral hernia
title Macrophage polarization in response to ECM coated polypropylene mesh
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macrophage%20polarization%20in%20response%20to%20ECM%20coated%20polypropylene%20mesh&rft.jtitle=Biomaterials&rft.au=Wolf,%20Matthew%20T&rft.date=2014-08-01&rft.volume=35&rft.issue=25&rft.spage=6838&rft.epage=6849&rft.pages=6838-6849&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2014.04.115&rft_dat=%3Cproquest_pubme%3E1627973147%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534469205&rft_id=info:pmid/24856104&rft_els_id=1_s2_0_S0142961214005286&rfr_iscdi=true