Macrophage polarization in response to ECM coated polypropylene mesh
Abstract The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies h...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2014-08, Vol.35 (25), p.6838-6849 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6849 |
---|---|
container_issue | 25 |
container_start_page | 6838 |
container_title | Biomaterials |
container_volume | 35 |
creator | Wolf, Matthew T Dearth, Christopher L Ranallo, Christian A LoPresti, Samuel T Carey, Lisa E Daly, Kerry A Brown, Bryan N Badylak, Stephen F |
description | Abstract The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies have shown that an extracellular matrix (ECM) hydrogel coating of polypropylene mesh reduces the intensity of the foreign body reaction, though the mode of action is unknown. Macrophage participation plays a key role in the development of the foreign body reaction to biomaterials, and therefore the present study investigated macrophage polarization following mesh implantation. Spatiotemporal analysis of macrophage polarization was conducted in response to uncoated polypropylene mesh and mesh coated with hydrated and dry forms of ECM hydrogels derived from either dermis or urinary bladder. Pro-inflammatory M1 macrophages (CD86+/CD68+), alternatively activated M2 macrophages (CD206+/CD68+), and foreign body giant cells were quantified between 3 and 35 days. Uncoated polypropylene mesh elicited a dominant M1 response at the mesh fiber surface, which was decreased by each ECM coating type beginning at 7 days. The diminished M1 response was accompanied by a reduction in the number of foreign body giant cells at 14 and 35 days, though there was a minimal effect upon the number of M2 macrophages at any time. These results show that ECM coatings attenuate the M1 macrophage response and increase the M2/M1 ratio to polypropylene mesh in vivo. |
doi_str_mv | 10.1016/j.biomaterials.2014.04.115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4347831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961214005286</els_id><sourcerecordid>1627973147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c707t-92342e020e58cce15bd62345cbf0c077fac8a99d6d78d2c3b7234470e4866b1d3</originalsourceid><addsrcrecordid>eNqNUk1v1DAQtRCILoW_gCJOXJKOHcdOOFRC20IrteoBOFuOM9v1ktjBzlba_nocbalaLt2TZb-P8cw8Qj5RKChQcbIpWusHPWGwuo8FA8oL4AWl1SuyoLWs86qB6jVZJIDljaDsiLyLcQPpDpy9JUeM15WgwBfk7Fqb4Me1vsVs9L0O9l5P1rvMuixgHL2LmE0-O19eZ8anmt1M241Js-vRYTZgXL8nb1bpJ_jh4Twmv76d_1xe5Fc33y-XX69yI0FOecNKzhAYYFUbg7RqO5GeKtOuwICUK21q3TSd6GTdMVO2MqFcAvJaiJZ25TE53fuO23bAzqCbgu7VGOygw055bdVzxNm1uvV3ipdc1iVNBp8fDIL_s8U4qcFGg32vHfptVCzNt6SCNvJFKhWcJXoa5AFUJpMj5Qe4Vqlj0TCYXb_sqWk_MQZcPfZJQc05UBv1NAdqzoECrlIOkvjj00k9Sv8tPhHO9gRM-7qzGFQ0Fp3BzgY0k-q8PazO6X82prfOGt3_xh3Gjd8GN2uoikyB-jEncg5kCiJUrBblXxsm314</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534469205</pqid></control><display><type>article</type><title>Macrophage polarization in response to ECM coated polypropylene mesh</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wolf, Matthew T ; Dearth, Christopher L ; Ranallo, Christian A ; LoPresti, Samuel T ; Carey, Lisa E ; Daly, Kerry A ; Brown, Bryan N ; Badylak, Stephen F</creator><creatorcontrib>Wolf, Matthew T ; Dearth, Christopher L ; Ranallo, Christian A ; LoPresti, Samuel T ; Carey, Lisa E ; Daly, Kerry A ; Brown, Bryan N ; Badylak, Stephen F</creatorcontrib><description>Abstract The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies have shown that an extracellular matrix (ECM) hydrogel coating of polypropylene mesh reduces the intensity of the foreign body reaction, though the mode of action is unknown. Macrophage participation plays a key role in the development of the foreign body reaction to biomaterials, and therefore the present study investigated macrophage polarization following mesh implantation. Spatiotemporal analysis of macrophage polarization was conducted in response to uncoated polypropylene mesh and mesh coated with hydrated and dry forms of ECM hydrogels derived from either dermis or urinary bladder. Pro-inflammatory M1 macrophages (CD86+/CD68+), alternatively activated M2 macrophages (CD206+/CD68+), and foreign body giant cells were quantified between 3 and 35 days. Uncoated polypropylene mesh elicited a dominant M1 response at the mesh fiber surface, which was decreased by each ECM coating type beginning at 7 days. The diminished M1 response was accompanied by a reduction in the number of foreign body giant cells at 14 and 35 days, though there was a minimal effect upon the number of M2 macrophages at any time. These results show that ECM coatings attenuate the M1 macrophage response and increase the M2/M1 ratio to polypropylene mesh in vivo.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2014.04.115</identifier><identifier>PMID: 24856104</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; biocompatible materials ; Biomaterials ; Biomedical materials ; bladder ; Coated Materials, Biocompatible - chemistry ; Coating ; coatings ; Dentistry ; dermis ; ECM (extracellular matrix) ; Electrochemical machining ; extracellular matrix ; Extracellular Matrix - chemistry ; Female ; fibrosis ; Fibrosis - pathology ; Foreign bodies ; Foreign-Body Reaction ; giant cells ; Hydrogel ; hydrogels ; Hydrogels - chemistry ; Immunity, Innate - drug effects ; Macrophage ; Macrophages ; Macrophages - chemistry ; Materials Testing ; mechanism of action ; Polypropylene ; Polypropylenes ; Polypropylenes - chemistry ; Prostheses and Implants ; Rats ; Rats, Sprague-Dawley ; Surgical implants ; Surgical Mesh ; Ventral hernia</subject><ispartof>Biomaterials, 2014-08, Vol.35 (25), p.6838-6849</ispartof><rights>Elsevier Ltd</rights><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>2014 Published by Elsevier Ltd. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c707t-92342e020e58cce15bd62345cbf0c077fac8a99d6d78d2c3b7234470e4866b1d3</citedby><cites>FETCH-LOGICAL-c707t-92342e020e58cce15bd62345cbf0c077fac8a99d6d78d2c3b7234470e4866b1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961214005286$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24856104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolf, Matthew T</creatorcontrib><creatorcontrib>Dearth, Christopher L</creatorcontrib><creatorcontrib>Ranallo, Christian A</creatorcontrib><creatorcontrib>LoPresti, Samuel T</creatorcontrib><creatorcontrib>Carey, Lisa E</creatorcontrib><creatorcontrib>Daly, Kerry A</creatorcontrib><creatorcontrib>Brown, Bryan N</creatorcontrib><creatorcontrib>Badylak, Stephen F</creatorcontrib><title>Macrophage polarization in response to ECM coated polypropylene mesh</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies have shown that an extracellular matrix (ECM) hydrogel coating of polypropylene mesh reduces the intensity of the foreign body reaction, though the mode of action is unknown. Macrophage participation plays a key role in the development of the foreign body reaction to biomaterials, and therefore the present study investigated macrophage polarization following mesh implantation. Spatiotemporal analysis of macrophage polarization was conducted in response to uncoated polypropylene mesh and mesh coated with hydrated and dry forms of ECM hydrogels derived from either dermis or urinary bladder. Pro-inflammatory M1 macrophages (CD86+/CD68+), alternatively activated M2 macrophages (CD206+/CD68+), and foreign body giant cells were quantified between 3 and 35 days. Uncoated polypropylene mesh elicited a dominant M1 response at the mesh fiber surface, which was decreased by each ECM coating type beginning at 7 days. The diminished M1 response was accompanied by a reduction in the number of foreign body giant cells at 14 and 35 days, though there was a minimal effect upon the number of M2 macrophages at any time. These results show that ECM coatings attenuate the M1 macrophage response and increase the M2/M1 ratio to polypropylene mesh in vivo.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>biocompatible materials</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>bladder</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coating</subject><subject>coatings</subject><subject>Dentistry</subject><subject>dermis</subject><subject>ECM (extracellular matrix)</subject><subject>Electrochemical machining</subject><subject>extracellular matrix</subject><subject>Extracellular Matrix - chemistry</subject><subject>Female</subject><subject>fibrosis</subject><subject>Fibrosis - pathology</subject><subject>Foreign bodies</subject><subject>Foreign-Body Reaction</subject><subject>giant cells</subject><subject>Hydrogel</subject><subject>hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Immunity, Innate - drug effects</subject><subject>Macrophage</subject><subject>Macrophages</subject><subject>Macrophages - chemistry</subject><subject>Materials Testing</subject><subject>mechanism of action</subject><subject>Polypropylene</subject><subject>Polypropylenes</subject><subject>Polypropylenes - chemistry</subject><subject>Prostheses and Implants</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Surgical implants</subject><subject>Surgical Mesh</subject><subject>Ventral hernia</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1DAQtRCILoW_gCJOXJKOHcdOOFRC20IrteoBOFuOM9v1ktjBzlba_nocbalaLt2TZb-P8cw8Qj5RKChQcbIpWusHPWGwuo8FA8oL4AWl1SuyoLWs86qB6jVZJIDljaDsiLyLcQPpDpy9JUeM15WgwBfk7Fqb4Me1vsVs9L0O9l5P1rvMuixgHL2LmE0-O19eZ8anmt1M241Js-vRYTZgXL8nb1bpJ_jh4Twmv76d_1xe5Fc33y-XX69yI0FOecNKzhAYYFUbg7RqO5GeKtOuwICUK21q3TSd6GTdMVO2MqFcAvJaiJZ25TE53fuO23bAzqCbgu7VGOygw055bdVzxNm1uvV3ipdc1iVNBp8fDIL_s8U4qcFGg32vHfptVCzNt6SCNvJFKhWcJXoa5AFUJpMj5Qe4Vqlj0TCYXb_sqWk_MQZcPfZJQc05UBv1NAdqzoECrlIOkvjj00k9Sv8tPhHO9gRM-7qzGFQ0Fp3BzgY0k-q8PazO6X82prfOGt3_xh3Gjd8GN2uoikyB-jEncg5kCiJUrBblXxsm314</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Wolf, Matthew T</creator><creator>Dearth, Christopher L</creator><creator>Ranallo, Christian A</creator><creator>LoPresti, Samuel T</creator><creator>Carey, Lisa E</creator><creator>Daly, Kerry A</creator><creator>Brown, Bryan N</creator><creator>Badylak, Stephen F</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140801</creationdate><title>Macrophage polarization in response to ECM coated polypropylene mesh</title><author>Wolf, Matthew T ; Dearth, Christopher L ; Ranallo, Christian A ; LoPresti, Samuel T ; Carey, Lisa E ; Daly, Kerry A ; Brown, Bryan N ; Badylak, Stephen F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c707t-92342e020e58cce15bd62345cbf0c077fac8a99d6d78d2c3b7234470e4866b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>biocompatible materials</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>bladder</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coating</topic><topic>coatings</topic><topic>Dentistry</topic><topic>dermis</topic><topic>ECM (extracellular matrix)</topic><topic>Electrochemical machining</topic><topic>extracellular matrix</topic><topic>Extracellular Matrix - chemistry</topic><topic>Female</topic><topic>fibrosis</topic><topic>Fibrosis - pathology</topic><topic>Foreign bodies</topic><topic>Foreign-Body Reaction</topic><topic>giant cells</topic><topic>Hydrogel</topic><topic>hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Immunity, Innate - drug effects</topic><topic>Macrophage</topic><topic>Macrophages</topic><topic>Macrophages - chemistry</topic><topic>Materials Testing</topic><topic>mechanism of action</topic><topic>Polypropylene</topic><topic>Polypropylenes</topic><topic>Polypropylenes - chemistry</topic><topic>Prostheses and Implants</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Surgical implants</topic><topic>Surgical Mesh</topic><topic>Ventral hernia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Matthew T</creatorcontrib><creatorcontrib>Dearth, Christopher L</creatorcontrib><creatorcontrib>Ranallo, Christian A</creatorcontrib><creatorcontrib>LoPresti, Samuel T</creatorcontrib><creatorcontrib>Carey, Lisa E</creatorcontrib><creatorcontrib>Daly, Kerry A</creatorcontrib><creatorcontrib>Brown, Bryan N</creatorcontrib><creatorcontrib>Badylak, Stephen F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Matthew T</au><au>Dearth, Christopher L</au><au>Ranallo, Christian A</au><au>LoPresti, Samuel T</au><au>Carey, Lisa E</au><au>Daly, Kerry A</au><au>Brown, Bryan N</au><au>Badylak, Stephen F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macrophage polarization in response to ECM coated polypropylene mesh</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>35</volume><issue>25</issue><spage>6838</spage><epage>6849</epage><pages>6838-6849</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies have shown that an extracellular matrix (ECM) hydrogel coating of polypropylene mesh reduces the intensity of the foreign body reaction, though the mode of action is unknown. Macrophage participation plays a key role in the development of the foreign body reaction to biomaterials, and therefore the present study investigated macrophage polarization following mesh implantation. Spatiotemporal analysis of macrophage polarization was conducted in response to uncoated polypropylene mesh and mesh coated with hydrated and dry forms of ECM hydrogels derived from either dermis or urinary bladder. Pro-inflammatory M1 macrophages (CD86+/CD68+), alternatively activated M2 macrophages (CD206+/CD68+), and foreign body giant cells were quantified between 3 and 35 days. Uncoated polypropylene mesh elicited a dominant M1 response at the mesh fiber surface, which was decreased by each ECM coating type beginning at 7 days. The diminished M1 response was accompanied by a reduction in the number of foreign body giant cells at 14 and 35 days, though there was a minimal effect upon the number of M2 macrophages at any time. These results show that ECM coatings attenuate the M1 macrophage response and increase the M2/M1 ratio to polypropylene mesh in vivo.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>24856104</pmid><doi>10.1016/j.biomaterials.2014.04.115</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2014-08, Vol.35 (25), p.6838-6849 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4347831 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Advanced Basic Science Animals biocompatible materials Biomaterials Biomedical materials bladder Coated Materials, Biocompatible - chemistry Coating coatings Dentistry dermis ECM (extracellular matrix) Electrochemical machining extracellular matrix Extracellular Matrix - chemistry Female fibrosis Fibrosis - pathology Foreign bodies Foreign-Body Reaction giant cells Hydrogel hydrogels Hydrogels - chemistry Immunity, Innate - drug effects Macrophage Macrophages Macrophages - chemistry Materials Testing mechanism of action Polypropylene Polypropylenes Polypropylenes - chemistry Prostheses and Implants Rats Rats, Sprague-Dawley Surgical implants Surgical Mesh Ventral hernia |
title | Macrophage polarization in response to ECM coated polypropylene mesh |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macrophage%20polarization%20in%20response%20to%20ECM%20coated%20polypropylene%20mesh&rft.jtitle=Biomaterials&rft.au=Wolf,%20Matthew%20T&rft.date=2014-08-01&rft.volume=35&rft.issue=25&rft.spage=6838&rft.epage=6849&rft.pages=6838-6849&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2014.04.115&rft_dat=%3Cproquest_pubme%3E1627973147%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534469205&rft_id=info:pmid/24856104&rft_els_id=1_s2_0_S0142961214005286&rfr_iscdi=true |