A general method to improve fluorophores for live-cell and single-molecule microscopy

A simple and general chemical structure change to a panel of cell-permeable small-molecule fluorophores increases their brightness and photostability, which will enable improved single-molecule studies and super-resolution imaging. Specific labeling of biomolecules with bright fluorophores is the ke...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2015-03, Vol.12 (3), p.244-250
Hauptverfasser: Grimm, Jonathan B, English, Brian P, Chen, Jiji, Slaughter, Joel P, Zhang, Zhengjian, Revyakin, Andrey, Patel, Ronak, Macklin, John J, Normanno, Davide, Singer, Robert H, Lionnet, Timothée, Lavis, Luke D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 3
container_start_page 244
container_title Nature methods
container_volume 12
creator Grimm, Jonathan B
English, Brian P
Chen, Jiji
Slaughter, Joel P
Zhang, Zhengjian
Revyakin, Andrey
Patel, Ronak
Macklin, John J
Normanno, Davide
Singer, Robert H
Lionnet, Timothée
Lavis, Luke D
description A simple and general chemical structure change to a panel of cell-permeable small-molecule fluorophores increases their brightness and photostability, which will enable improved single-molecule studies and super-resolution imaging. Specific labeling of biomolecules with bright fluorophores is the keystone of fluorescence microscopy. Genetically encoded self-labeling tag proteins can be coupled to synthetic dyes inside living cells, resulting in brighter reporters than fluorescent proteins. Intracellular labeling using these techniques requires cell-permeable fluorescent ligands, however, limiting utility to a small number of classic fluorophores. Here we describe a simple structural modification that improves the brightness and photostability of dyes while preserving spectral properties and cell permeability. Inspired by molecular modeling, we replaced the N , N -dimethylamino substituents in tetramethylrhodamine with four-membered azetidine rings. This addition of two carbon atoms doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging. The novel substitution is generalizable, yielding a palette of chemical dyes with improved quantum efficiencies that spans the UV and visible range.
doi_str_mv 10.1038/nmeth.3256
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4344395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A403450141</galeid><sourcerecordid>A403450141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-86a68b32b53a95f37055f671a29a8ae7006d16873ce2ca74b25719856522bbb73</originalsourceid><addsrcrecordid>eNptkktv1DAUhSMEoqWw4QegSGwQKINf1042lUYVL6kSG7q2nOQm48qxgz0Zqf8eh2lLC8gLW77fPdY5vkXxmpINJbz-6Cfc7zacgXxSnFIQdaUogad3Z9LQk-JFSteEcC4YPC9OGEDTANDT4mpbjugxGleuKqEv96G00xzDAcvBLSGGeRcipnIIsXT2gFWHzpXG92WyfnRYTcFhtzgsJ9vFkLow37wsng3GJXx1u58VV58__bj4Wl1-__LtYntZdaBgX9XSyLrlrAVuGhi4IgCDVNSwxtQGFSGyp7JWvEPWGSVaBoo2NUhgrG1bxc-K86PuvLQT9h36fXai52gnE290MFY_rni702M4aMGF4A1kgXe3AjH8XDDt9WTTatB4DEvSVMqcGpFCZvTtX-h1WKLP9jIFtWJMcfWHGo1Dbf0Q8rvdKqq3gnABhAqaqc1_qLx6zCEGj4PN948a3h8b1oRTxOHeIyV6HQL9ewj0OgQZfvMwlXv07tcz8OEIpFzyI8YHVv6V-wU70rsY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658722737</pqid></control><display><type>article</type><title>A general method to improve fluorophores for live-cell and single-molecule microscopy</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Grimm, Jonathan B ; English, Brian P ; Chen, Jiji ; Slaughter, Joel P ; Zhang, Zhengjian ; Revyakin, Andrey ; Patel, Ronak ; Macklin, John J ; Normanno, Davide ; Singer, Robert H ; Lionnet, Timothée ; Lavis, Luke D</creator><creatorcontrib>Grimm, Jonathan B ; English, Brian P ; Chen, Jiji ; Slaughter, Joel P ; Zhang, Zhengjian ; Revyakin, Andrey ; Patel, Ronak ; Macklin, John J ; Normanno, Davide ; Singer, Robert H ; Lionnet, Timothée ; Lavis, Luke D</creatorcontrib><description>A simple and general chemical structure change to a panel of cell-permeable small-molecule fluorophores increases their brightness and photostability, which will enable improved single-molecule studies and super-resolution imaging. Specific labeling of biomolecules with bright fluorophores is the keystone of fluorescence microscopy. Genetically encoded self-labeling tag proteins can be coupled to synthetic dyes inside living cells, resulting in brighter reporters than fluorescent proteins. Intracellular labeling using these techniques requires cell-permeable fluorescent ligands, however, limiting utility to a small number of classic fluorophores. Here we describe a simple structural modification that improves the brightness and photostability of dyes while preserving spectral properties and cell permeability. Inspired by molecular modeling, we replaced the N , N -dimethylamino substituents in tetramethylrhodamine with four-membered azetidine rings. This addition of two carbon atoms doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging. The novel substitution is generalizable, yielding a palette of chemical dyes with improved quantum efficiencies that spans the UV and visible range.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/nmeth.3256</identifier><identifier>PMID: 25599551</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>14 ; 14/34 ; 14/63 ; 14/69 ; 631/1647/1888/1493 ; 631/80/2373 ; 631/92/95 ; 631/92/96 ; Azetidines - chemistry ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical Engineering/Biotechnology ; Cellular biology ; Chemistry Techniques, Synthetic ; Coumarins - chemistry ; Dyes ; Dyes and dyeing ; Fluorescein - chemistry ; Fluorescence microscopy ; Fluorescent Dyes - analysis ; Fluorescent Dyes - chemical synthesis ; Fluorescent Dyes - chemistry ; HeLa Cells ; Humans ; Innovations ; Life Sciences ; Microscopy ; Microscopy, Ultraviolet - methods ; Models, Molecular ; Molecular Imaging - methods ; Permeability ; Properties ; Proteins ; Proteomics ; Quantum Theory ; Rhodamines - chemistry ; Scientific imaging ; Spectrometry, Fluorescence ; Spectrophotometry, Ultraviolet - methods ; Structure-Activity Relationship</subject><ispartof>Nature methods, 2015-03, Vol.12 (3), p.244-250</ispartof><rights>Springer Nature America, Inc. 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-86a68b32b53a95f37055f671a29a8ae7006d16873ce2ca74b25719856522bbb73</citedby><cites>FETCH-LOGICAL-c575t-86a68b32b53a95f37055f671a29a8ae7006d16873ce2ca74b25719856522bbb73</cites><orcidid>0000-0003-4740-5542 ; 0000000347405542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmeth.3256$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmeth.3256$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25599551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grimm, Jonathan B</creatorcontrib><creatorcontrib>English, Brian P</creatorcontrib><creatorcontrib>Chen, Jiji</creatorcontrib><creatorcontrib>Slaughter, Joel P</creatorcontrib><creatorcontrib>Zhang, Zhengjian</creatorcontrib><creatorcontrib>Revyakin, Andrey</creatorcontrib><creatorcontrib>Patel, Ronak</creatorcontrib><creatorcontrib>Macklin, John J</creatorcontrib><creatorcontrib>Normanno, Davide</creatorcontrib><creatorcontrib>Singer, Robert H</creatorcontrib><creatorcontrib>Lionnet, Timothée</creatorcontrib><creatorcontrib>Lavis, Luke D</creatorcontrib><title>A general method to improve fluorophores for live-cell and single-molecule microscopy</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>A simple and general chemical structure change to a panel of cell-permeable small-molecule fluorophores increases their brightness and photostability, which will enable improved single-molecule studies and super-resolution imaging. Specific labeling of biomolecules with bright fluorophores is the keystone of fluorescence microscopy. Genetically encoded self-labeling tag proteins can be coupled to synthetic dyes inside living cells, resulting in brighter reporters than fluorescent proteins. Intracellular labeling using these techniques requires cell-permeable fluorescent ligands, however, limiting utility to a small number of classic fluorophores. Here we describe a simple structural modification that improves the brightness and photostability of dyes while preserving spectral properties and cell permeability. Inspired by molecular modeling, we replaced the N , N -dimethylamino substituents in tetramethylrhodamine with four-membered azetidine rings. This addition of two carbon atoms doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging. The novel substitution is generalizable, yielding a palette of chemical dyes with improved quantum efficiencies that spans the UV and visible range.</description><subject>14</subject><subject>14/34</subject><subject>14/63</subject><subject>14/69</subject><subject>631/1647/1888/1493</subject><subject>631/80/2373</subject><subject>631/92/95</subject><subject>631/92/96</subject><subject>Azetidines - chemistry</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Cellular biology</subject><subject>Chemistry Techniques, Synthetic</subject><subject>Coumarins - chemistry</subject><subject>Dyes</subject><subject>Dyes and dyeing</subject><subject>Fluorescein - chemistry</subject><subject>Fluorescence microscopy</subject><subject>Fluorescent Dyes - analysis</subject><subject>Fluorescent Dyes - chemical synthesis</subject><subject>Fluorescent Dyes - chemistry</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Innovations</subject><subject>Life Sciences</subject><subject>Microscopy</subject><subject>Microscopy, Ultraviolet - methods</subject><subject>Models, Molecular</subject><subject>Molecular Imaging - methods</subject><subject>Permeability</subject><subject>Properties</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Quantum Theory</subject><subject>Rhodamines - chemistry</subject><subject>Scientific imaging</subject><subject>Spectrometry, Fluorescence</subject><subject>Spectrophotometry, Ultraviolet - methods</subject><subject>Structure-Activity Relationship</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkktv1DAUhSMEoqWw4QegSGwQKINf1042lUYVL6kSG7q2nOQm48qxgz0Zqf8eh2lLC8gLW77fPdY5vkXxmpINJbz-6Cfc7zacgXxSnFIQdaUogad3Z9LQk-JFSteEcC4YPC9OGEDTANDT4mpbjugxGleuKqEv96G00xzDAcvBLSGGeRcipnIIsXT2gFWHzpXG92WyfnRYTcFhtzgsJ9vFkLow37wsng3GJXx1u58VV58__bj4Wl1-__LtYntZdaBgX9XSyLrlrAVuGhi4IgCDVNSwxtQGFSGyp7JWvEPWGSVaBoo2NUhgrG1bxc-K86PuvLQT9h36fXai52gnE290MFY_rni702M4aMGF4A1kgXe3AjH8XDDt9WTTatB4DEvSVMqcGpFCZvTtX-h1WKLP9jIFtWJMcfWHGo1Dbf0Q8rvdKqq3gnABhAqaqc1_qLx6zCEGj4PN948a3h8b1oRTxOHeIyV6HQL9ewj0OgQZfvMwlXv07tcz8OEIpFzyI8YHVv6V-wU70rsY</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Grimm, Jonathan B</creator><creator>English, Brian P</creator><creator>Chen, Jiji</creator><creator>Slaughter, Joel P</creator><creator>Zhang, Zhengjian</creator><creator>Revyakin, Andrey</creator><creator>Patel, Ronak</creator><creator>Macklin, John J</creator><creator>Normanno, Davide</creator><creator>Singer, Robert H</creator><creator>Lionnet, Timothée</creator><creator>Lavis, Luke D</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4740-5542</orcidid><orcidid>https://orcid.org/0000000347405542</orcidid></search><sort><creationdate>20150301</creationdate><title>A general method to improve fluorophores for live-cell and single-molecule microscopy</title><author>Grimm, Jonathan B ; English, Brian P ; Chen, Jiji ; Slaughter, Joel P ; Zhang, Zhengjian ; Revyakin, Andrey ; Patel, Ronak ; Macklin, John J ; Normanno, Davide ; Singer, Robert H ; Lionnet, Timothée ; Lavis, Luke D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-86a68b32b53a95f37055f671a29a8ae7006d16873ce2ca74b25719856522bbb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>14</topic><topic>14/34</topic><topic>14/63</topic><topic>14/69</topic><topic>631/1647/1888/1493</topic><topic>631/80/2373</topic><topic>631/92/95</topic><topic>631/92/96</topic><topic>Azetidines - chemistry</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Cellular biology</topic><topic>Chemistry Techniques, Synthetic</topic><topic>Coumarins - chemistry</topic><topic>Dyes</topic><topic>Dyes and dyeing</topic><topic>Fluorescein - chemistry</topic><topic>Fluorescence microscopy</topic><topic>Fluorescent Dyes - analysis</topic><topic>Fluorescent Dyes - chemical synthesis</topic><topic>Fluorescent Dyes - chemistry</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Innovations</topic><topic>Life Sciences</topic><topic>Microscopy</topic><topic>Microscopy, Ultraviolet - methods</topic><topic>Models, Molecular</topic><topic>Molecular Imaging - methods</topic><topic>Permeability</topic><topic>Properties</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Quantum Theory</topic><topic>Rhodamines - chemistry</topic><topic>Scientific imaging</topic><topic>Spectrometry, Fluorescence</topic><topic>Spectrophotometry, Ultraviolet - methods</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimm, Jonathan B</creatorcontrib><creatorcontrib>English, Brian P</creatorcontrib><creatorcontrib>Chen, Jiji</creatorcontrib><creatorcontrib>Slaughter, Joel P</creatorcontrib><creatorcontrib>Zhang, Zhengjian</creatorcontrib><creatorcontrib>Revyakin, Andrey</creatorcontrib><creatorcontrib>Patel, Ronak</creatorcontrib><creatorcontrib>Macklin, John J</creatorcontrib><creatorcontrib>Normanno, Davide</creatorcontrib><creatorcontrib>Singer, Robert H</creatorcontrib><creatorcontrib>Lionnet, Timothée</creatorcontrib><creatorcontrib>Lavis, Luke D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimm, Jonathan B</au><au>English, Brian P</au><au>Chen, Jiji</au><au>Slaughter, Joel P</au><au>Zhang, Zhengjian</au><au>Revyakin, Andrey</au><au>Patel, Ronak</au><au>Macklin, John J</au><au>Normanno, Davide</au><au>Singer, Robert H</au><au>Lionnet, Timothée</au><au>Lavis, Luke D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general method to improve fluorophores for live-cell and single-molecule microscopy</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>12</volume><issue>3</issue><spage>244</spage><epage>250</epage><pages>244-250</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>A simple and general chemical structure change to a panel of cell-permeable small-molecule fluorophores increases their brightness and photostability, which will enable improved single-molecule studies and super-resolution imaging. Specific labeling of biomolecules with bright fluorophores is the keystone of fluorescence microscopy. Genetically encoded self-labeling tag proteins can be coupled to synthetic dyes inside living cells, resulting in brighter reporters than fluorescent proteins. Intracellular labeling using these techniques requires cell-permeable fluorescent ligands, however, limiting utility to a small number of classic fluorophores. Here we describe a simple structural modification that improves the brightness and photostability of dyes while preserving spectral properties and cell permeability. Inspired by molecular modeling, we replaced the N , N -dimethylamino substituents in tetramethylrhodamine with four-membered azetidine rings. This addition of two carbon atoms doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging. The novel substitution is generalizable, yielding a palette of chemical dyes with improved quantum efficiencies that spans the UV and visible range.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25599551</pmid><doi>10.1038/nmeth.3256</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4740-5542</orcidid><orcidid>https://orcid.org/0000000347405542</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2015-03, Vol.12 (3), p.244-250
issn 1548-7091
1548-7105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4344395
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 14
14/34
14/63
14/69
631/1647/1888/1493
631/80/2373
631/92/95
631/92/96
Azetidines - chemistry
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical Engineering/Biotechnology
Cellular biology
Chemistry Techniques, Synthetic
Coumarins - chemistry
Dyes
Dyes and dyeing
Fluorescein - chemistry
Fluorescence microscopy
Fluorescent Dyes - analysis
Fluorescent Dyes - chemical synthesis
Fluorescent Dyes - chemistry
HeLa Cells
Humans
Innovations
Life Sciences
Microscopy
Microscopy, Ultraviolet - methods
Models, Molecular
Molecular Imaging - methods
Permeability
Properties
Proteins
Proteomics
Quantum Theory
Rhodamines - chemistry
Scientific imaging
Spectrometry, Fluorescence
Spectrophotometry, Ultraviolet - methods
Structure-Activity Relationship
title A general method to improve fluorophores for live-cell and single-molecule microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20method%20to%20improve%20fluorophores%20for%20live-cell%20and%20single-molecule%20microscopy&rft.jtitle=Nature%20methods&rft.au=Grimm,%20Jonathan%20B&rft.date=2015-03-01&rft.volume=12&rft.issue=3&rft.spage=244&rft.epage=250&rft.pages=244-250&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/nmeth.3256&rft_dat=%3Cgale_pubme%3EA403450141%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658722737&rft_id=info:pmid/25599551&rft_galeid=A403450141&rfr_iscdi=true