CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel β-subunit redox sensor

Significance CRYPTOCHROMES (CRYs) are blue light photoreceptors that mediate phototransduction in brain arousal neurons, as well as circadian light entrainment in Drosophila fruit flies. We describe how light-activated Drosophila CRY couples to membrane depolarization and increased action potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-02, Vol.112 (7), p.2245-2250
Hauptverfasser: Fogle, Keri J., Baik, Lisa S., Houl, Jerry H., Tran, Tri T., Roberts, Logan, Dahm, Nicole A., Cao, Yu, Zhou, Ming, Holmes, Todd C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2250
container_issue 7
container_start_page 2245
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Fogle, Keri J.
Baik, Lisa S.
Houl, Jerry H.
Tran, Tri T.
Roberts, Logan
Dahm, Nicole A.
Cao, Yu
Zhou, Ming
Holmes, Todd C.
description Significance CRYPTOCHROMES (CRYs) are blue light photoreceptors that mediate phototransduction in brain arousal neurons, as well as circadian light entrainment in Drosophila fruit flies. We describe how light-activated Drosophila CRY couples to membrane depolarization and increased action potential firing rate in large ventral lateral arousal neurons. Pharmacological treatments that specifically disrupt the CRY redox-sensitive flavin chromophore or block voltage-gated K ⁺ channels abolish the light response. Correspondingly, we find that the Kvβ channel subunit Hyperkinetic with a well conserved redox sensor domain links light-evoked redox changes in CRY to rapid changes in membrane electrical potential. Blue light activation of the photoreceptor CRYPTOCHROME (CRY) evokes rapid depolarization and increased action potential firing in a subset of circadian and arousal neurons in Drosophila melanogaster . Here we show that acute arousal behavioral responses to blue light significantly differ in mutants lacking CRY, as well as mutants with disrupted opsin-based phototransduction. Light-activated CRY couples to membrane depolarization via a well conserved redox sensor of the voltage-gated potassium (K ⁺) channel β-subunit (Kvβ) Hyperkinetic (Hk). The neuronal light response is almost completely absent in hk ⁻/⁻ mutants, but is functionally rescued by genetically targeted neuronal expression of WT Hk, but not by Hk point mutations that disable Hk redox sensor function. Multiple K ⁺ channel α-subunits that coassemble with Hk, including Shaker, Ether-a-go-go, and Ether-a-go-go–related gene, are ion conducting channels for CRY/Hk-coupled light response. Light activation of CRY is transduced to membrane depolarization, increased firing rate, and acute behavioral responses by the Kvβ subunit redox sensor.
doi_str_mv 10.1073/pnas.1416586112
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4343116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26461619</jstor_id><sourcerecordid>26461619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-984c445c6515404c2e63328fac95bf333390ac119af2326ba50d7c929ad94a0c3</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EotvCmROQYy9pZ_wv8QUJrQpFKlpU2gMny3GcblaJvY0dRF-LB-GZSNiyLSd8sTzzm0_z-SPkFcIJQsFOt97EE-QoRSkR6ROyQFCYS67gKVkA0CIvOeUH5DDGDQAoUcJzckCF5JILuiCb5eW3L1er5fnl6vNZ3ru6NcnV2XYdUkiD8bEebWqDz6q7rA_12Jk_r9Bkae2ybUgmxnbss7lo18Z712W_fuZxrEbfpmxwdfiRRedjGF6QZ43pont5fx-R6w9nV8vz_GL18dPy_UVuuRIpVyW3nAsrBQoO3FInGaNlY6wSVcOmo8BYRGUayqisjIC6sIoqUytuwLIj8m6nux2ryZB1fjLS6e3Q9ma408G0-t-Ob9f6JnzXnHGGKCeB43uBIdyOLibdt9G6rjPehTFqLIEhlZyr_6NSFAwFkzChpzvUDiHGwTX7jRD0HKaew9QPYU4Tbx4b2fN_03sEzJN7OaS60JRyMQGvd8AmpjA8CEzzKHFe_-2u35igzc3QRn39lQJKAORi-lP2G-QJuZI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1657315360</pqid></control><display><type>article</type><title>CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel β-subunit redox sensor</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fogle, Keri J. ; Baik, Lisa S. ; Houl, Jerry H. ; Tran, Tri T. ; Roberts, Logan ; Dahm, Nicole A. ; Cao, Yu ; Zhou, Ming ; Holmes, Todd C.</creator><creatorcontrib>Fogle, Keri J. ; Baik, Lisa S. ; Houl, Jerry H. ; Tran, Tri T. ; Roberts, Logan ; Dahm, Nicole A. ; Cao, Yu ; Zhou, Ming ; Holmes, Todd C.</creatorcontrib><description>Significance CRYPTOCHROMES (CRYs) are blue light photoreceptors that mediate phototransduction in brain arousal neurons, as well as circadian light entrainment in Drosophila fruit flies. We describe how light-activated Drosophila CRY couples to membrane depolarization and increased action potential firing rate in large ventral lateral arousal neurons. Pharmacological treatments that specifically disrupt the CRY redox-sensitive flavin chromophore or block voltage-gated K ⁺ channels abolish the light response. Correspondingly, we find that the Kvβ channel subunit Hyperkinetic with a well conserved redox sensor domain links light-evoked redox changes in CRY to rapid changes in membrane electrical potential. Blue light activation of the photoreceptor CRYPTOCHROME (CRY) evokes rapid depolarization and increased action potential firing in a subset of circadian and arousal neurons in Drosophila melanogaster . Here we show that acute arousal behavioral responses to blue light significantly differ in mutants lacking CRY, as well as mutants with disrupted opsin-based phototransduction. Light-activated CRY couples to membrane depolarization via a well conserved redox sensor of the voltage-gated potassium (K ⁺) channel β-subunit (Kvβ) Hyperkinetic (Hk). The neuronal light response is almost completely absent in hk ⁻/⁻ mutants, but is functionally rescued by genetically targeted neuronal expression of WT Hk, but not by Hk point mutations that disable Hk redox sensor function. Multiple K ⁺ channel α-subunits that coassemble with Hk, including Shaker, Ether-a-go-go, and Ether-a-go-go–related gene, are ion conducting channels for CRY/Hk-coupled light response. Light activation of CRY is transduced to membrane depolarization, increased firing rate, and acute behavioral responses by the Kvβ subunit redox sensor.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1416586112</identifier><identifier>PMID: 25646452</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>action potentials ; Animals ; Biological Sciences ; blue light ; brain ; cryptochromes ; Cryptochromes - physiology ; Drosophila ; fruit flies ; ion channels ; Light Signal Transduction ; neurons ; Oxidation-Reduction ; photoreceptors ; phototransduction ; potassium ; Potassium Channels - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-02, Vol.112 (7), p.2245-2250</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-984c445c6515404c2e63328fac95bf333390ac119af2326ba50d7c929ad94a0c3</citedby><cites>FETCH-LOGICAL-c495t-984c445c6515404c2e63328fac95bf333390ac119af2326ba50d7c929ad94a0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26461619$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26461619$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25646452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fogle, Keri J.</creatorcontrib><creatorcontrib>Baik, Lisa S.</creatorcontrib><creatorcontrib>Houl, Jerry H.</creatorcontrib><creatorcontrib>Tran, Tri T.</creatorcontrib><creatorcontrib>Roberts, Logan</creatorcontrib><creatorcontrib>Dahm, Nicole A.</creatorcontrib><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Holmes, Todd C.</creatorcontrib><title>CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel β-subunit redox sensor</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significance CRYPTOCHROMES (CRYs) are blue light photoreceptors that mediate phototransduction in brain arousal neurons, as well as circadian light entrainment in Drosophila fruit flies. We describe how light-activated Drosophila CRY couples to membrane depolarization and increased action potential firing rate in large ventral lateral arousal neurons. Pharmacological treatments that specifically disrupt the CRY redox-sensitive flavin chromophore or block voltage-gated K ⁺ channels abolish the light response. Correspondingly, we find that the Kvβ channel subunit Hyperkinetic with a well conserved redox sensor domain links light-evoked redox changes in CRY to rapid changes in membrane electrical potential. Blue light activation of the photoreceptor CRYPTOCHROME (CRY) evokes rapid depolarization and increased action potential firing in a subset of circadian and arousal neurons in Drosophila melanogaster . Here we show that acute arousal behavioral responses to blue light significantly differ in mutants lacking CRY, as well as mutants with disrupted opsin-based phototransduction. Light-activated CRY couples to membrane depolarization via a well conserved redox sensor of the voltage-gated potassium (K ⁺) channel β-subunit (Kvβ) Hyperkinetic (Hk). The neuronal light response is almost completely absent in hk ⁻/⁻ mutants, but is functionally rescued by genetically targeted neuronal expression of WT Hk, but not by Hk point mutations that disable Hk redox sensor function. Multiple K ⁺ channel α-subunits that coassemble with Hk, including Shaker, Ether-a-go-go, and Ether-a-go-go–related gene, are ion conducting channels for CRY/Hk-coupled light response. Light activation of CRY is transduced to membrane depolarization, increased firing rate, and acute behavioral responses by the Kvβ subunit redox sensor.</description><subject>action potentials</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>blue light</subject><subject>brain</subject><subject>cryptochromes</subject><subject>Cryptochromes - physiology</subject><subject>Drosophila</subject><subject>fruit flies</subject><subject>ion channels</subject><subject>Light Signal Transduction</subject><subject>neurons</subject><subject>Oxidation-Reduction</subject><subject>photoreceptors</subject><subject>phototransduction</subject><subject>potassium</subject><subject>Potassium Channels - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxi0EotvCmROQYy9pZ_wv8QUJrQpFKlpU2gMny3GcblaJvY0dRF-LB-GZSNiyLSd8sTzzm0_z-SPkFcIJQsFOt97EE-QoRSkR6ROyQFCYS67gKVkA0CIvOeUH5DDGDQAoUcJzckCF5JILuiCb5eW3L1er5fnl6vNZ3ru6NcnV2XYdUkiD8bEebWqDz6q7rA_12Jk_r9Bkae2ybUgmxnbss7lo18Z712W_fuZxrEbfpmxwdfiRRedjGF6QZ43pont5fx-R6w9nV8vz_GL18dPy_UVuuRIpVyW3nAsrBQoO3FInGaNlY6wSVcOmo8BYRGUayqisjIC6sIoqUytuwLIj8m6nux2ryZB1fjLS6e3Q9ma408G0-t-Ob9f6JnzXnHGGKCeB43uBIdyOLibdt9G6rjPehTFqLIEhlZyr_6NSFAwFkzChpzvUDiHGwTX7jRD0HKaew9QPYU4Tbx4b2fN_03sEzJN7OaS60JRyMQGvd8AmpjA8CEzzKHFe_-2u35igzc3QRn39lQJKAORi-lP2G-QJuZI</recordid><startdate>20150217</startdate><enddate>20150217</enddate><creator>Fogle, Keri J.</creator><creator>Baik, Lisa S.</creator><creator>Houl, Jerry H.</creator><creator>Tran, Tri T.</creator><creator>Roberts, Logan</creator><creator>Dahm, Nicole A.</creator><creator>Cao, Yu</creator><creator>Zhou, Ming</creator><creator>Holmes, Todd C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150217</creationdate><title>CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel β-subunit redox sensor</title><author>Fogle, Keri J. ; Baik, Lisa S. ; Houl, Jerry H. ; Tran, Tri T. ; Roberts, Logan ; Dahm, Nicole A. ; Cao, Yu ; Zhou, Ming ; Holmes, Todd C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-984c445c6515404c2e63328fac95bf333390ac119af2326ba50d7c929ad94a0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>action potentials</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>blue light</topic><topic>brain</topic><topic>cryptochromes</topic><topic>Cryptochromes - physiology</topic><topic>Drosophila</topic><topic>fruit flies</topic><topic>ion channels</topic><topic>Light Signal Transduction</topic><topic>neurons</topic><topic>Oxidation-Reduction</topic><topic>photoreceptors</topic><topic>phototransduction</topic><topic>potassium</topic><topic>Potassium Channels - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fogle, Keri J.</creatorcontrib><creatorcontrib>Baik, Lisa S.</creatorcontrib><creatorcontrib>Houl, Jerry H.</creatorcontrib><creatorcontrib>Tran, Tri T.</creatorcontrib><creatorcontrib>Roberts, Logan</creatorcontrib><creatorcontrib>Dahm, Nicole A.</creatorcontrib><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Holmes, Todd C.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fogle, Keri J.</au><au>Baik, Lisa S.</au><au>Houl, Jerry H.</au><au>Tran, Tri T.</au><au>Roberts, Logan</au><au>Dahm, Nicole A.</au><au>Cao, Yu</au><au>Zhou, Ming</au><au>Holmes, Todd C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel β-subunit redox sensor</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-02-17</date><risdate>2015</risdate><volume>112</volume><issue>7</issue><spage>2245</spage><epage>2250</epage><pages>2245-2250</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance CRYPTOCHROMES (CRYs) are blue light photoreceptors that mediate phototransduction in brain arousal neurons, as well as circadian light entrainment in Drosophila fruit flies. We describe how light-activated Drosophila CRY couples to membrane depolarization and increased action potential firing rate in large ventral lateral arousal neurons. Pharmacological treatments that specifically disrupt the CRY redox-sensitive flavin chromophore or block voltage-gated K ⁺ channels abolish the light response. Correspondingly, we find that the Kvβ channel subunit Hyperkinetic with a well conserved redox sensor domain links light-evoked redox changes in CRY to rapid changes in membrane electrical potential. Blue light activation of the photoreceptor CRYPTOCHROME (CRY) evokes rapid depolarization and increased action potential firing in a subset of circadian and arousal neurons in Drosophila melanogaster . Here we show that acute arousal behavioral responses to blue light significantly differ in mutants lacking CRY, as well as mutants with disrupted opsin-based phototransduction. Light-activated CRY couples to membrane depolarization via a well conserved redox sensor of the voltage-gated potassium (K ⁺) channel β-subunit (Kvβ) Hyperkinetic (Hk). The neuronal light response is almost completely absent in hk ⁻/⁻ mutants, but is functionally rescued by genetically targeted neuronal expression of WT Hk, but not by Hk point mutations that disable Hk redox sensor function. Multiple K ⁺ channel α-subunits that coassemble with Hk, including Shaker, Ether-a-go-go, and Ether-a-go-go–related gene, are ion conducting channels for CRY/Hk-coupled light response. Light activation of CRY is transduced to membrane depolarization, increased firing rate, and acute behavioral responses by the Kvβ subunit redox sensor.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25646452</pmid><doi>10.1073/pnas.1416586112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-02, Vol.112 (7), p.2245-2250
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4343116
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects action potentials
Animals
Biological Sciences
blue light
brain
cryptochromes
Cryptochromes - physiology
Drosophila
fruit flies
ion channels
Light Signal Transduction
neurons
Oxidation-Reduction
photoreceptors
phototransduction
potassium
Potassium Channels - physiology
title CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel β-subunit redox sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRYPTOCHROME-mediated%20phototransduction%20by%20modulation%20of%20the%20potassium%20ion%20channel%20%CE%B2-subunit%20redox%20sensor&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fogle,%20Keri%20J.&rft.date=2015-02-17&rft.volume=112&rft.issue=7&rft.spage=2245&rft.epage=2250&rft.pages=2245-2250&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1416586112&rft_dat=%3Cjstor_pubme%3E26461619%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1657315360&rft_id=info:pmid/25646452&rft_jstor_id=26461619&rfr_iscdi=true