Misfit accommodation mechanism at the heterointerface between diamond and cubic boron nitride

Diamond and cubic boron nitride (c-BN) are the top two hardest materials on the Earth. Clarifying how the two seemingly incompressible materials can actually join represents one of the most challenging issues in materials science. Here we apply the temperature gradient method to grow the c-BN single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-02, Vol.6 (1), p.6327, Article 6327
Hauptverfasser: Chen, Chunlin, Wang, Zhongchang, Kato, Takeharu, Shibata, Naoya, Taniguchi, Takashi, Ikuhara, Yuichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 6327
container_title Nature communications
container_volume 6
creator Chen, Chunlin
Wang, Zhongchang
Kato, Takeharu
Shibata, Naoya
Taniguchi, Takashi
Ikuhara, Yuichi
description Diamond and cubic boron nitride (c-BN) are the top two hardest materials on the Earth. Clarifying how the two seemingly incompressible materials can actually join represents one of the most challenging issues in materials science. Here we apply the temperature gradient method to grow the c-BN single crystals on diamond and report a successful epitaxial growth. By transmission electron microscopy, we reveal a novel misfit accommodation mechanism for a {111} diamond/c-BN heterointerface, that is, lattice misfit can be accommodated by continuous stacking fault networks, which are connected by periodically arranged hexagonal dislocation loops. The loops are found to comprise six 60° Shockley partial dislocations. Atomically, the carbon in diamond bonds directly to boron in c-BN at the interface, which electronically induces a two-dimensional electron gas and a quasi-1D electrical conductivity. Our findings point to the existence of a novel misfit accommodation mechanism associated with the superhard materials. Interfaces between two materials often show interesting properties. Here, the authors demonstrate that diamond and cubic boron nitride, the hardest materials known, can be grown on top of each other through a novel misfit accommodation mechanism, forming a two-dimensional electron gas at the interface.
doi_str_mv 10.1038/ncomms7327
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4339885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3593177561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-86cc90c2d5322c917b0b5950588604192f94ac5d299cc0701fa9c5574eb955ac3</originalsourceid><addsrcrecordid>eNplkUtLAzEQgIMoWrQXf4AEvCnVPDbd5CKI-ALFix4lZGezNqWb1CRV_PdGqrViIJnAfHwzySC0T8kJJVyeegh9n2rO6g00YKSiI1ozvrl230HDlKakLK6orKpttMPEWNZcqQF6vnepcxkb-PKE1mQXPO4tTIx3qccm4zyxeGKzjcH5cnYGLG5sfrfW49aZPvgWm7Jh0TjATYhF4F2OrrV7aKszs2SH33EXPV1dPl7cjO4erm8vzu9GIIjMIzkGUARYKzhjoGjdkEYoQYSU4_IKxTpVGRAtUwqA1IR2RoEQdWUbJYQBvovOlt75oultC9bnaGZ6Hl1v4ocOxum_Ge8m-iW86YpzJaUogsNvQQyvC5uynoZF9KVnTcdCCC4kqwp1tKQghpSi7VYVKNFf09C_0yjwwXpPK_Tn7wtwvARSSfkXG9dq_td9AtGvlpk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1655535824</pqid></control><display><type>article</type><title>Misfit accommodation mechanism at the heterointerface between diamond and cubic boron nitride</title><source>PubMed (Medline)</source><source>Open Access: Nature Open Access</source><source>Springer Open Access</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Chen, Chunlin ; Wang, Zhongchang ; Kato, Takeharu ; Shibata, Naoya ; Taniguchi, Takashi ; Ikuhara, Yuichi</creator><creatorcontrib>Chen, Chunlin ; Wang, Zhongchang ; Kato, Takeharu ; Shibata, Naoya ; Taniguchi, Takashi ; Ikuhara, Yuichi</creatorcontrib><description>Diamond and cubic boron nitride (c-BN) are the top two hardest materials on the Earth. Clarifying how the two seemingly incompressible materials can actually join represents one of the most challenging issues in materials science. Here we apply the temperature gradient method to grow the c-BN single crystals on diamond and report a successful epitaxial growth. By transmission electron microscopy, we reveal a novel misfit accommodation mechanism for a {111} diamond/c-BN heterointerface, that is, lattice misfit can be accommodated by continuous stacking fault networks, which are connected by periodically arranged hexagonal dislocation loops. The loops are found to comprise six 60° Shockley partial dislocations. Atomically, the carbon in diamond bonds directly to boron in c-BN at the interface, which electronically induces a two-dimensional electron gas and a quasi-1D electrical conductivity. Our findings point to the existence of a novel misfit accommodation mechanism associated with the superhard materials. Interfaces between two materials often show interesting properties. Here, the authors demonstrate that diamond and cubic boron nitride, the hardest materials known, can be grown on top of each other through a novel misfit accommodation mechanism, forming a two-dimensional electron gas at the interface.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms7327</identifier><identifier>PMID: 25687399</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/28 ; 639/301/119/1002 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2015-02, Vol.6 (1), p.6327, Article 6327</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Feb 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-86cc90c2d5322c917b0b5950588604192f94ac5d299cc0701fa9c5574eb955ac3</citedby><cites>FETCH-LOGICAL-c508t-86cc90c2d5322c917b0b5950588604192f94ac5d299cc0701fa9c5574eb955ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339885/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339885/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25687399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Chunlin</creatorcontrib><creatorcontrib>Wang, Zhongchang</creatorcontrib><creatorcontrib>Kato, Takeharu</creatorcontrib><creatorcontrib>Shibata, Naoya</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Ikuhara, Yuichi</creatorcontrib><title>Misfit accommodation mechanism at the heterointerface between diamond and cubic boron nitride</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Diamond and cubic boron nitride (c-BN) are the top two hardest materials on the Earth. Clarifying how the two seemingly incompressible materials can actually join represents one of the most challenging issues in materials science. Here we apply the temperature gradient method to grow the c-BN single crystals on diamond and report a successful epitaxial growth. By transmission electron microscopy, we reveal a novel misfit accommodation mechanism for a {111} diamond/c-BN heterointerface, that is, lattice misfit can be accommodated by continuous stacking fault networks, which are connected by periodically arranged hexagonal dislocation loops. The loops are found to comprise six 60° Shockley partial dislocations. Atomically, the carbon in diamond bonds directly to boron in c-BN at the interface, which electronically induces a two-dimensional electron gas and a quasi-1D electrical conductivity. Our findings point to the existence of a novel misfit accommodation mechanism associated with the superhard materials. Interfaces between two materials often show interesting properties. Here, the authors demonstrate that diamond and cubic boron nitride, the hardest materials known, can be grown on top of each other through a novel misfit accommodation mechanism, forming a two-dimensional electron gas at the interface.</description><subject>14/28</subject><subject>639/301/119/1002</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkUtLAzEQgIMoWrQXf4AEvCnVPDbd5CKI-ALFix4lZGezNqWb1CRV_PdGqrViIJnAfHwzySC0T8kJJVyeegh9n2rO6g00YKSiI1ozvrl230HDlKakLK6orKpttMPEWNZcqQF6vnepcxkb-PKE1mQXPO4tTIx3qccm4zyxeGKzjcH5cnYGLG5sfrfW49aZPvgWm7Jh0TjATYhF4F2OrrV7aKszs2SH33EXPV1dPl7cjO4erm8vzu9GIIjMIzkGUARYKzhjoGjdkEYoQYSU4_IKxTpVGRAtUwqA1IR2RoEQdWUbJYQBvovOlt75oultC9bnaGZ6Hl1v4ocOxum_Ge8m-iW86YpzJaUogsNvQQyvC5uynoZF9KVnTcdCCC4kqwp1tKQghpSi7VYVKNFf09C_0yjwwXpPK_Tn7wtwvARSSfkXG9dq_td9AtGvlpk</recordid><startdate>20150217</startdate><enddate>20150217</enddate><creator>Chen, Chunlin</creator><creator>Wang, Zhongchang</creator><creator>Kato, Takeharu</creator><creator>Shibata, Naoya</creator><creator>Taniguchi, Takashi</creator><creator>Ikuhara, Yuichi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20150217</creationdate><title>Misfit accommodation mechanism at the heterointerface between diamond and cubic boron nitride</title><author>Chen, Chunlin ; Wang, Zhongchang ; Kato, Takeharu ; Shibata, Naoya ; Taniguchi, Takashi ; Ikuhara, Yuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-86cc90c2d5322c917b0b5950588604192f94ac5d299cc0701fa9c5574eb955ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>14/28</topic><topic>639/301/119/1002</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chunlin</creatorcontrib><creatorcontrib>Wang, Zhongchang</creatorcontrib><creatorcontrib>Kato, Takeharu</creatorcontrib><creatorcontrib>Shibata, Naoya</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Ikuhara, Yuichi</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chunlin</au><au>Wang, Zhongchang</au><au>Kato, Takeharu</au><au>Shibata, Naoya</au><au>Taniguchi, Takashi</au><au>Ikuhara, Yuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Misfit accommodation mechanism at the heterointerface between diamond and cubic boron nitride</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-02-17</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>6327</spage><pages>6327-</pages><artnum>6327</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Diamond and cubic boron nitride (c-BN) are the top two hardest materials on the Earth. Clarifying how the two seemingly incompressible materials can actually join represents one of the most challenging issues in materials science. Here we apply the temperature gradient method to grow the c-BN single crystals on diamond and report a successful epitaxial growth. By transmission electron microscopy, we reveal a novel misfit accommodation mechanism for a {111} diamond/c-BN heterointerface, that is, lattice misfit can be accommodated by continuous stacking fault networks, which are connected by periodically arranged hexagonal dislocation loops. The loops are found to comprise six 60° Shockley partial dislocations. Atomically, the carbon in diamond bonds directly to boron in c-BN at the interface, which electronically induces a two-dimensional electron gas and a quasi-1D electrical conductivity. Our findings point to the existence of a novel misfit accommodation mechanism associated with the superhard materials. Interfaces between two materials often show interesting properties. Here, the authors demonstrate that diamond and cubic boron nitride, the hardest materials known, can be grown on top of each other through a novel misfit accommodation mechanism, forming a two-dimensional electron gas at the interface.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25687399</pmid><doi>10.1038/ncomms7327</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2015-02, Vol.6 (1), p.6327, Article 6327
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4339885
source PubMed (Medline); Open Access: Nature Open Access; Springer Open Access; Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects 14/28
639/301/119/1002
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Misfit accommodation mechanism at the heterointerface between diamond and cubic boron nitride
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Misfit%20accommodation%20mechanism%20at%20the%20heterointerface%20between%20diamond%20and%20cubic%20boron%20nitride&rft.jtitle=Nature%20communications&rft.au=Chen,%20Chunlin&rft.date=2015-02-17&rft.volume=6&rft.issue=1&rft.spage=6327&rft.pages=6327-&rft.artnum=6327&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms7327&rft_dat=%3Cproquest_pubme%3E3593177561%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1655535824&rft_id=info:pmid/25687399&rfr_iscdi=true