Computational analysis of signaling patterns in single cells
Signaling proteins are flexible in both form and function. They can bind to multiple molecular partners and integrate diverse types of cellular information. When imaged by time-lapse microscopy, many signaling proteins show complex patterns of activity or localization that vary from cell to cell. Th...
Gespeichert in:
Veröffentlicht in: | Seminars in cell & developmental biology 2015-01, Vol.37, p.35-43 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | |
container_start_page | 35 |
container_title | Seminars in cell & developmental biology |
container_volume | 37 |
creator | Davis, Denise M. Purvis, Jeremy E. |
description | Signaling proteins are flexible in both form and function. They can bind to multiple molecular partners and integrate diverse types of cellular information. When imaged by time-lapse microscopy, many signaling proteins show complex patterns of activity or localization that vary from cell to cell. This heterogeneity is so prevalent that it has spurred the development of new computational strategies to analyze single-cell signaling patterns. A collective observation from these analyses is that cells appear less heterogeneous when their responses are normalized to, or synchronized with, other single-cell measurements. In many cases, these transformed signaling patterns show distinct dynamical trends that correspond with predictable phenotypic outcomes. When signaling mechanisms are unclear, computational models can suggest putative molecular interactions that are experimentally testable. Thus, computational analysis of single-cell signaling has not only provided new ways to quantify the responses of individual cells, but has helped resolve longstanding questions surrounding many well-studied human signaling proteins including NF-κB, p53, ERK1/2, and CDK2. A number of specific challenges lie ahead for single-cell analysis such as quantifying the contribution of non-cell autonomous signaling as well as the characterization of protein signaling dynamics in vivo. |
doi_str_mv | 10.1016/j.semcdb.2014.09.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4339661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1084952114002705</els_id><sourcerecordid>1672087705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-6bfbce854744a381f1c694e7a3af49470031be7afe4d37f94a8ba39e3f59288d3</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4Mouj6-gUiPXlqTJk0bEEEWX7DgRc8hTSdrljZZk-7CfnuzrM-Ll0zm9Z-ZH0LnBBcEE361KCIMumuLEhNWYFFgUu2hCcGC55RTtr_9NywXVUmO0HGMC4wxEyU_REdlVXKKCZmg66kflqtRjdY71WcqPZtoY-ZNFu08edbNs6UaRwguZtalqJv3kGno-3iKDozqI5x92hP0en_3Mn3MZ88PT9PbWa4rSsect6bV0FSsZkzRhhiiuWBQK6oME6zGmJI2uQZYR2sjmGpaRQVQU4myaTp6gm52ustVO0CnwY1B9XIZ7KDCRnpl5d-Ms29y7teSUSo4J0ng8lMg-PcVxFEONm5PUA78KkrC6xI3dY2rVMp2pTr4GAOY7zEEyy14uZA78HILXmIhE_jUdvF7xe-mL9I_N0ACtbYQZNQWnIbOBtCj7Lz9f8IHmy2Xig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672087705</pqid></control><display><type>article</type><title>Computational analysis of signaling patterns in single cells</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Davis, Denise M. ; Purvis, Jeremy E.</creator><creatorcontrib>Davis, Denise M. ; Purvis, Jeremy E.</creatorcontrib><description>Signaling proteins are flexible in both form and function. They can bind to multiple molecular partners and integrate diverse types of cellular information. When imaged by time-lapse microscopy, many signaling proteins show complex patterns of activity or localization that vary from cell to cell. This heterogeneity is so prevalent that it has spurred the development of new computational strategies to analyze single-cell signaling patterns. A collective observation from these analyses is that cells appear less heterogeneous when their responses are normalized to, or synchronized with, other single-cell measurements. In many cases, these transformed signaling patterns show distinct dynamical trends that correspond with predictable phenotypic outcomes. When signaling mechanisms are unclear, computational models can suggest putative molecular interactions that are experimentally testable. Thus, computational analysis of single-cell signaling has not only provided new ways to quantify the responses of individual cells, but has helped resolve longstanding questions surrounding many well-studied human signaling proteins including NF-κB, p53, ERK1/2, and CDK2. A number of specific challenges lie ahead for single-cell analysis such as quantifying the contribution of non-cell autonomous signaling as well as the characterization of protein signaling dynamics in vivo.</description><identifier>ISSN: 1084-9521</identifier><identifier>EISSN: 1096-3634</identifier><identifier>DOI: 10.1016/j.semcdb.2014.09.015</identifier><identifier>PMID: 25263011</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cell signaling ; Computational modeling ; Computer Simulation ; Humans ; Signal Transduction ; Single-Cell Analysis ; Time-lapse microscopy</subject><ispartof>Seminars in cell & developmental biology, 2015-01, Vol.37, p.35-43</ispartof><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>2014 Elsevier Ltd. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-6bfbce854744a381f1c694e7a3af49470031be7afe4d37f94a8ba39e3f59288d3</citedby><cites>FETCH-LOGICAL-c533t-6bfbce854744a381f1c694e7a3af49470031be7afe4d37f94a8ba39e3f59288d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.semcdb.2014.09.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25263011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davis, Denise M.</creatorcontrib><creatorcontrib>Purvis, Jeremy E.</creatorcontrib><title>Computational analysis of signaling patterns in single cells</title><title>Seminars in cell & developmental biology</title><addtitle>Semin Cell Dev Biol</addtitle><description>Signaling proteins are flexible in both form and function. They can bind to multiple molecular partners and integrate diverse types of cellular information. When imaged by time-lapse microscopy, many signaling proteins show complex patterns of activity or localization that vary from cell to cell. This heterogeneity is so prevalent that it has spurred the development of new computational strategies to analyze single-cell signaling patterns. A collective observation from these analyses is that cells appear less heterogeneous when their responses are normalized to, or synchronized with, other single-cell measurements. In many cases, these transformed signaling patterns show distinct dynamical trends that correspond with predictable phenotypic outcomes. When signaling mechanisms are unclear, computational models can suggest putative molecular interactions that are experimentally testable. Thus, computational analysis of single-cell signaling has not only provided new ways to quantify the responses of individual cells, but has helped resolve longstanding questions surrounding many well-studied human signaling proteins including NF-κB, p53, ERK1/2, and CDK2. A number of specific challenges lie ahead for single-cell analysis such as quantifying the contribution of non-cell autonomous signaling as well as the characterization of protein signaling dynamics in vivo.</description><subject>Animals</subject><subject>Cell signaling</subject><subject>Computational modeling</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Signal Transduction</subject><subject>Single-Cell Analysis</subject><subject>Time-lapse microscopy</subject><issn>1084-9521</issn><issn>1096-3634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAQx4Mouj6-gUiPXlqTJk0bEEEWX7DgRc8hTSdrljZZk-7CfnuzrM-Ll0zm9Z-ZH0LnBBcEE361KCIMumuLEhNWYFFgUu2hCcGC55RTtr_9NywXVUmO0HGMC4wxEyU_REdlVXKKCZmg66kflqtRjdY71WcqPZtoY-ZNFu08edbNs6UaRwguZtalqJv3kGno-3iKDozqI5x92hP0en_3Mn3MZ88PT9PbWa4rSsect6bV0FSsZkzRhhiiuWBQK6oME6zGmJI2uQZYR2sjmGpaRQVQU4myaTp6gm52ustVO0CnwY1B9XIZ7KDCRnpl5d-Ms29y7teSUSo4J0ng8lMg-PcVxFEONm5PUA78KkrC6xI3dY2rVMp2pTr4GAOY7zEEyy14uZA78HILXmIhE_jUdvF7xe-mL9I_N0ACtbYQZNQWnIbOBtCj7Lz9f8IHmy2Xig</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Davis, Denise M.</creator><creator>Purvis, Jeremy E.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>Computational analysis of signaling patterns in single cells</title><author>Davis, Denise M. ; Purvis, Jeremy E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-6bfbce854744a381f1c694e7a3af49470031be7afe4d37f94a8ba39e3f59288d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cell signaling</topic><topic>Computational modeling</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Signal Transduction</topic><topic>Single-Cell Analysis</topic><topic>Time-lapse microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Denise M.</creatorcontrib><creatorcontrib>Purvis, Jeremy E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Seminars in cell & developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Denise M.</au><au>Purvis, Jeremy E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational analysis of signaling patterns in single cells</atitle><jtitle>Seminars in cell & developmental biology</jtitle><addtitle>Semin Cell Dev Biol</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>37</volume><spage>35</spage><epage>43</epage><pages>35-43</pages><issn>1084-9521</issn><eissn>1096-3634</eissn><abstract>Signaling proteins are flexible in both form and function. They can bind to multiple molecular partners and integrate diverse types of cellular information. When imaged by time-lapse microscopy, many signaling proteins show complex patterns of activity or localization that vary from cell to cell. This heterogeneity is so prevalent that it has spurred the development of new computational strategies to analyze single-cell signaling patterns. A collective observation from these analyses is that cells appear less heterogeneous when their responses are normalized to, or synchronized with, other single-cell measurements. In many cases, these transformed signaling patterns show distinct dynamical trends that correspond with predictable phenotypic outcomes. When signaling mechanisms are unclear, computational models can suggest putative molecular interactions that are experimentally testable. Thus, computational analysis of single-cell signaling has not only provided new ways to quantify the responses of individual cells, but has helped resolve longstanding questions surrounding many well-studied human signaling proteins including NF-κB, p53, ERK1/2, and CDK2. A number of specific challenges lie ahead for single-cell analysis such as quantifying the contribution of non-cell autonomous signaling as well as the characterization of protein signaling dynamics in vivo.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25263011</pmid><doi>10.1016/j.semcdb.2014.09.015</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-9521 |
ispartof | Seminars in cell & developmental biology, 2015-01, Vol.37, p.35-43 |
issn | 1084-9521 1096-3634 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4339661 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Cell signaling Computational modeling Computer Simulation Humans Signal Transduction Single-Cell Analysis Time-lapse microscopy |
title | Computational analysis of signaling patterns in single cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20analysis%20of%20signaling%20patterns%20in%20single%20cells&rft.jtitle=Seminars%20in%20cell%20&%20developmental%20biology&rft.au=Davis,%20Denise%20M.&rft.date=2015-01-01&rft.volume=37&rft.spage=35&rft.epage=43&rft.pages=35-43&rft.issn=1084-9521&rft.eissn=1096-3634&rft_id=info:doi/10.1016/j.semcdb.2014.09.015&rft_dat=%3Cproquest_pubme%3E1672087705%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672087705&rft_id=info:pmid/25263011&rft_els_id=S1084952114002705&rfr_iscdi=true |