Computational analysis of signaling patterns in single cells

Signaling proteins are flexible in both form and function. They can bind to multiple molecular partners and integrate diverse types of cellular information. When imaged by time-lapse microscopy, many signaling proteins show complex patterns of activity or localization that vary from cell to cell. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Seminars in cell & developmental biology 2015-01, Vol.37, p.35-43
Hauptverfasser: Davis, Denise M., Purvis, Jeremy E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue
container_start_page 35
container_title Seminars in cell & developmental biology
container_volume 37
creator Davis, Denise M.
Purvis, Jeremy E.
description Signaling proteins are flexible in both form and function. They can bind to multiple molecular partners and integrate diverse types of cellular information. When imaged by time-lapse microscopy, many signaling proteins show complex patterns of activity or localization that vary from cell to cell. This heterogeneity is so prevalent that it has spurred the development of new computational strategies to analyze single-cell signaling patterns. A collective observation from these analyses is that cells appear less heterogeneous when their responses are normalized to, or synchronized with, other single-cell measurements. In many cases, these transformed signaling patterns show distinct dynamical trends that correspond with predictable phenotypic outcomes. When signaling mechanisms are unclear, computational models can suggest putative molecular interactions that are experimentally testable. Thus, computational analysis of single-cell signaling has not only provided new ways to quantify the responses of individual cells, but has helped resolve longstanding questions surrounding many well-studied human signaling proteins including NF-κB, p53, ERK1/2, and CDK2. A number of specific challenges lie ahead for single-cell analysis such as quantifying the contribution of non-cell autonomous signaling as well as the characterization of protein signaling dynamics in vivo.
doi_str_mv 10.1016/j.semcdb.2014.09.015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4339661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1084952114002705</els_id><sourcerecordid>1672087705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-6bfbce854744a381f1c694e7a3af49470031be7afe4d37f94a8ba39e3f59288d3</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4Mouj6-gUiPXlqTJk0bEEEWX7DgRc8hTSdrljZZk-7CfnuzrM-Ll0zm9Z-ZH0LnBBcEE361KCIMumuLEhNWYFFgUu2hCcGC55RTtr_9NywXVUmO0HGMC4wxEyU_REdlVXKKCZmg66kflqtRjdY71WcqPZtoY-ZNFu08edbNs6UaRwguZtalqJv3kGno-3iKDozqI5x92hP0en_3Mn3MZ88PT9PbWa4rSsect6bV0FSsZkzRhhiiuWBQK6oME6zGmJI2uQZYR2sjmGpaRQVQU4myaTp6gm52ustVO0CnwY1B9XIZ7KDCRnpl5d-Ms29y7teSUSo4J0ng8lMg-PcVxFEONm5PUA78KkrC6xI3dY2rVMp2pTr4GAOY7zEEyy14uZA78HILXmIhE_jUdvF7xe-mL9I_N0ACtbYQZNQWnIbOBtCj7Lz9f8IHmy2Xig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672087705</pqid></control><display><type>article</type><title>Computational analysis of signaling patterns in single cells</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Davis, Denise M. ; Purvis, Jeremy E.</creator><creatorcontrib>Davis, Denise M. ; Purvis, Jeremy E.</creatorcontrib><description>Signaling proteins are flexible in both form and function. They can bind to multiple molecular partners and integrate diverse types of cellular information. When imaged by time-lapse microscopy, many signaling proteins show complex patterns of activity or localization that vary from cell to cell. This heterogeneity is so prevalent that it has spurred the development of new computational strategies to analyze single-cell signaling patterns. A collective observation from these analyses is that cells appear less heterogeneous when their responses are normalized to, or synchronized with, other single-cell measurements. In many cases, these transformed signaling patterns show distinct dynamical trends that correspond with predictable phenotypic outcomes. When signaling mechanisms are unclear, computational models can suggest putative molecular interactions that are experimentally testable. Thus, computational analysis of single-cell signaling has not only provided new ways to quantify the responses of individual cells, but has helped resolve longstanding questions surrounding many well-studied human signaling proteins including NF-κB, p53, ERK1/2, and CDK2. A number of specific challenges lie ahead for single-cell analysis such as quantifying the contribution of non-cell autonomous signaling as well as the characterization of protein signaling dynamics in vivo.</description><identifier>ISSN: 1084-9521</identifier><identifier>EISSN: 1096-3634</identifier><identifier>DOI: 10.1016/j.semcdb.2014.09.015</identifier><identifier>PMID: 25263011</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cell signaling ; Computational modeling ; Computer Simulation ; Humans ; Signal Transduction ; Single-Cell Analysis ; Time-lapse microscopy</subject><ispartof>Seminars in cell &amp; developmental biology, 2015-01, Vol.37, p.35-43</ispartof><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>2014 Elsevier Ltd. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-6bfbce854744a381f1c694e7a3af49470031be7afe4d37f94a8ba39e3f59288d3</citedby><cites>FETCH-LOGICAL-c533t-6bfbce854744a381f1c694e7a3af49470031be7afe4d37f94a8ba39e3f59288d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.semcdb.2014.09.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25263011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davis, Denise M.</creatorcontrib><creatorcontrib>Purvis, Jeremy E.</creatorcontrib><title>Computational analysis of signaling patterns in single cells</title><title>Seminars in cell &amp; developmental biology</title><addtitle>Semin Cell Dev Biol</addtitle><description>Signaling proteins are flexible in both form and function. They can bind to multiple molecular partners and integrate diverse types of cellular information. When imaged by time-lapse microscopy, many signaling proteins show complex patterns of activity or localization that vary from cell to cell. This heterogeneity is so prevalent that it has spurred the development of new computational strategies to analyze single-cell signaling patterns. A collective observation from these analyses is that cells appear less heterogeneous when their responses are normalized to, or synchronized with, other single-cell measurements. In many cases, these transformed signaling patterns show distinct dynamical trends that correspond with predictable phenotypic outcomes. When signaling mechanisms are unclear, computational models can suggest putative molecular interactions that are experimentally testable. Thus, computational analysis of single-cell signaling has not only provided new ways to quantify the responses of individual cells, but has helped resolve longstanding questions surrounding many well-studied human signaling proteins including NF-κB, p53, ERK1/2, and CDK2. A number of specific challenges lie ahead for single-cell analysis such as quantifying the contribution of non-cell autonomous signaling as well as the characterization of protein signaling dynamics in vivo.</description><subject>Animals</subject><subject>Cell signaling</subject><subject>Computational modeling</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Signal Transduction</subject><subject>Single-Cell Analysis</subject><subject>Time-lapse microscopy</subject><issn>1084-9521</issn><issn>1096-3634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAQx4Mouj6-gUiPXlqTJk0bEEEWX7DgRc8hTSdrljZZk-7CfnuzrM-Ll0zm9Z-ZH0LnBBcEE361KCIMumuLEhNWYFFgUu2hCcGC55RTtr_9NywXVUmO0HGMC4wxEyU_REdlVXKKCZmg66kflqtRjdY71WcqPZtoY-ZNFu08edbNs6UaRwguZtalqJv3kGno-3iKDozqI5x92hP0en_3Mn3MZ88PT9PbWa4rSsect6bV0FSsZkzRhhiiuWBQK6oME6zGmJI2uQZYR2sjmGpaRQVQU4myaTp6gm52ustVO0CnwY1B9XIZ7KDCRnpl5d-Ms29y7teSUSo4J0ng8lMg-PcVxFEONm5PUA78KkrC6xI3dY2rVMp2pTr4GAOY7zEEyy14uZA78HILXmIhE_jUdvF7xe-mL9I_N0ACtbYQZNQWnIbOBtCj7Lz9f8IHmy2Xig</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Davis, Denise M.</creator><creator>Purvis, Jeremy E.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>Computational analysis of signaling patterns in single cells</title><author>Davis, Denise M. ; Purvis, Jeremy E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-6bfbce854744a381f1c694e7a3af49470031be7afe4d37f94a8ba39e3f59288d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cell signaling</topic><topic>Computational modeling</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Signal Transduction</topic><topic>Single-Cell Analysis</topic><topic>Time-lapse microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Denise M.</creatorcontrib><creatorcontrib>Purvis, Jeremy E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Seminars in cell &amp; developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Denise M.</au><au>Purvis, Jeremy E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational analysis of signaling patterns in single cells</atitle><jtitle>Seminars in cell &amp; developmental biology</jtitle><addtitle>Semin Cell Dev Biol</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>37</volume><spage>35</spage><epage>43</epage><pages>35-43</pages><issn>1084-9521</issn><eissn>1096-3634</eissn><abstract>Signaling proteins are flexible in both form and function. They can bind to multiple molecular partners and integrate diverse types of cellular information. When imaged by time-lapse microscopy, many signaling proteins show complex patterns of activity or localization that vary from cell to cell. This heterogeneity is so prevalent that it has spurred the development of new computational strategies to analyze single-cell signaling patterns. A collective observation from these analyses is that cells appear less heterogeneous when their responses are normalized to, or synchronized with, other single-cell measurements. In many cases, these transformed signaling patterns show distinct dynamical trends that correspond with predictable phenotypic outcomes. When signaling mechanisms are unclear, computational models can suggest putative molecular interactions that are experimentally testable. Thus, computational analysis of single-cell signaling has not only provided new ways to quantify the responses of individual cells, but has helped resolve longstanding questions surrounding many well-studied human signaling proteins including NF-κB, p53, ERK1/2, and CDK2. A number of specific challenges lie ahead for single-cell analysis such as quantifying the contribution of non-cell autonomous signaling as well as the characterization of protein signaling dynamics in vivo.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25263011</pmid><doi>10.1016/j.semcdb.2014.09.015</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1084-9521
ispartof Seminars in cell & developmental biology, 2015-01, Vol.37, p.35-43
issn 1084-9521
1096-3634
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4339661
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Cell signaling
Computational modeling
Computer Simulation
Humans
Signal Transduction
Single-Cell Analysis
Time-lapse microscopy
title Computational analysis of signaling patterns in single cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20analysis%20of%20signaling%20patterns%20in%20single%20cells&rft.jtitle=Seminars%20in%20cell%20&%20developmental%20biology&rft.au=Davis,%20Denise%20M.&rft.date=2015-01-01&rft.volume=37&rft.spage=35&rft.epage=43&rft.pages=35-43&rft.issn=1084-9521&rft.eissn=1096-3634&rft_id=info:doi/10.1016/j.semcdb.2014.09.015&rft_dat=%3Cproquest_pubme%3E1672087705%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672087705&rft_id=info:pmid/25263011&rft_els_id=S1084952114002705&rfr_iscdi=true