Tmem100 Is a Regulator of TRPA1-TRPV1 Complex and Contributes to Persistent Pain

TRPA1 and TRPV1 are crucial pain mediators, but how their interaction contributes to persistent pain is unknown. Here, we identify Tmem100 as a potentiating modulator of TRPA1-V1 complexes. Tmem100 is coexpressed and forms a complex with TRPA1 and TRPV1 in DRG neurons. Tmem100-deficient mice show a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2015-02, Vol.85 (4), p.833-846
Hauptverfasser: Weng, Hao-Jui, Patel, Kush N., Jeske, Nathaniel A., Bierbower, Sonya M., Zou, Wangyuan, Tiwari, Vinod, Zheng, Qin, Tang, Zongxiang, Mo, Gary C.H., Wang, Yan, Geng, Yixun, Zhang, Jin, Guan, Yun, Akopian, Armen N., Dong, Xinzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 846
container_issue 4
container_start_page 833
container_title Neuron (Cambridge, Mass.)
container_volume 85
creator Weng, Hao-Jui
Patel, Kush N.
Jeske, Nathaniel A.
Bierbower, Sonya M.
Zou, Wangyuan
Tiwari, Vinod
Zheng, Qin
Tang, Zongxiang
Mo, Gary C.H.
Wang, Yan
Geng, Yixun
Zhang, Jin
Guan, Yun
Akopian, Armen N.
Dong, Xinzhong
description TRPA1 and TRPV1 are crucial pain mediators, but how their interaction contributes to persistent pain is unknown. Here, we identify Tmem100 as a potentiating modulator of TRPA1-V1 complexes. Tmem100 is coexpressed and forms a complex with TRPA1 and TRPV1 in DRG neurons. Tmem100-deficient mice show a reduction in inflammatory mechanical hyperalgesia and TRPA1- but not TRPV1-mediated pain. Single-channel recording in a heterologous system reveals that Tmem100 selectively potentiates TRPA1 activity in a TRPV1-dependent manner. Mechanistically, Tmem100 weakens the association of TRPA1 and TRPV1, thereby releasing the inhibition of TRPA1 by TRPV1. A Tmem100 mutant, Tmem100-3Q, exerts the opposite effect; i.e., it enhances the association of TRPA1 and TRPV1 and strongly inhibits TRPA1. Strikingly, a cell-permeable peptide (CPP) containing the C-terminal sequence of Tmem100-3Q mimics its effect and inhibits persistent pain. Our study unveils a context-dependent modulation of the TRPA1-V1 complex, and Tmem100-3Q CPP is a promising pain therapy. •A unique context-dependent TRP channel regulation by disinhibitory mechanism•Tmem100 as a potentiating modulator of TRPA1 in the TRPA1-TRPV1 complex•Tmem100-mutant-derived cell-permeable peptide as novel pain therapeutics•The first mechanistic study of Tmem100, an important gene implicated in diseases TRPA1 and TRPV1 are crucial pain mediators, but how their interaction contributes to persistent pain is unknown. Weng et al. identify Tmem100 as a potentiating modulator of TRPA1-V1 complexes. Targeting this modulation, they developed a strategy for blocking persistent pain.
doi_str_mv 10.1016/j.neuron.2014.12.065
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4336228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089662731401174X</els_id><sourcerecordid>3595546751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-793028d6ba62a3c6504dc337e196b69b0168b1b473b2afbd6bcb6455fd9ed5363</originalsourceid><addsrcrecordid>eNqNkUuLFDEUhYMoTjv6D0QCbtxUmVclnY0wND4GBmyG1m1IUrfGNFVJm1QN-u9N0-P4WIibJJDvnnvvOQg9p6SlhMrX-zbCklNsGaGipawlsnuAVpRo1Qiq9UO0ImstG8kUP0NPStmTCnaaPkZnrJOCEKVWaLubYKKE4MuCLb6Gm2W0c8o4DXh3vb2gTT0_U7xJ02GEb9jGvr7jnINbZih4TngLuYQyQ5zx1ob4FD0a7Fjg2d19jj69e7vbfGiuPr6_3FxcNV5KMjdKc8LWvXRWMsu97IjoPecKqJZOalc3XDvqhOKO2cFV0Dspum7oNfQdl_wcvTnpHhY3Qe9r_2xHc8hhsvm7STaYP39i-GJu0q0RnEvG1lXg1Z1ATl8XKLOZQvEwjjZCWoqhUgpGGJHsP9BO8RoDVRV9-Re6T0uO1YkjJYkgWh-HFyfK51RKhuF-bkrMMV2zN6d0zTFdQ5mp6dayF7_vfF_0M85fpkB1_jZANsUHiB76kMHPpk_h3x1-ACYita0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656040996</pqid></control><display><type>article</type><title>Tmem100 Is a Regulator of TRPA1-TRPV1 Complex and Contributes to Persistent Pain</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Weng, Hao-Jui ; Patel, Kush N. ; Jeske, Nathaniel A. ; Bierbower, Sonya M. ; Zou, Wangyuan ; Tiwari, Vinod ; Zheng, Qin ; Tang, Zongxiang ; Mo, Gary C.H. ; Wang, Yan ; Geng, Yixun ; Zhang, Jin ; Guan, Yun ; Akopian, Armen N. ; Dong, Xinzhong</creator><creatorcontrib>Weng, Hao-Jui ; Patel, Kush N. ; Jeske, Nathaniel A. ; Bierbower, Sonya M. ; Zou, Wangyuan ; Tiwari, Vinod ; Zheng, Qin ; Tang, Zongxiang ; Mo, Gary C.H. ; Wang, Yan ; Geng, Yixun ; Zhang, Jin ; Guan, Yun ; Akopian, Armen N. ; Dong, Xinzhong</creatorcontrib><description>TRPA1 and TRPV1 are crucial pain mediators, but how their interaction contributes to persistent pain is unknown. Here, we identify Tmem100 as a potentiating modulator of TRPA1-V1 complexes. Tmem100 is coexpressed and forms a complex with TRPA1 and TRPV1 in DRG neurons. Tmem100-deficient mice show a reduction in inflammatory mechanical hyperalgesia and TRPA1- but not TRPV1-mediated pain. Single-channel recording in a heterologous system reveals that Tmem100 selectively potentiates TRPA1 activity in a TRPV1-dependent manner. Mechanistically, Tmem100 weakens the association of TRPA1 and TRPV1, thereby releasing the inhibition of TRPA1 by TRPV1. A Tmem100 mutant, Tmem100-3Q, exerts the opposite effect; i.e., it enhances the association of TRPA1 and TRPV1 and strongly inhibits TRPA1. Strikingly, a cell-permeable peptide (CPP) containing the C-terminal sequence of Tmem100-3Q mimics its effect and inhibits persistent pain. Our study unveils a context-dependent modulation of the TRPA1-V1 complex, and Tmem100-3Q CPP is a promising pain therapy. •A unique context-dependent TRP channel regulation by disinhibitory mechanism•Tmem100 as a potentiating modulator of TRPA1 in the TRPA1-TRPV1 complex•Tmem100-mutant-derived cell-permeable peptide as novel pain therapeutics•The first mechanistic study of Tmem100, an important gene implicated in diseases TRPA1 and TRPV1 are crucial pain mediators, but how their interaction contributes to persistent pain is unknown. Weng et al. identify Tmem100 as a potentiating modulator of TRPA1-V1 complexes. Targeting this modulation, they developed a strategy for blocking persistent pain.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2014.12.065</identifier><identifier>PMID: 25640077</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - drug effects ; Action Potentials - genetics ; Animals ; Biophysical Phenomena - drug effects ; Biophysical Phenomena - genetics ; Capsaicin - toxicity ; Cells, Cultured ; CHO Cells ; Cricetulus ; Disease Models, Animal ; Electric Stimulation ; Ganglia, Spinal - cytology ; Ganglia, Spinal - metabolism ; HEK293 Cells ; Humans ; Hyperalgesia - genetics ; Hyperalgesia - metabolism ; Male ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neurons ; Neurons - drug effects ; Neurons - physiology ; Pain ; Pain - chemically induced ; Pain - metabolism ; Pain - pathology ; Pain Measurement ; Peptides ; Physical Stimulation ; Proteins ; Studies ; Transient Receptor Potential Channels - metabolism ; TRPA1 Cation Channel ; TRPV Cation Channels - metabolism</subject><ispartof>Neuron (Cambridge, Mass.), 2015-02, Vol.85 (4), p.833-846</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 18, 2015</rights><rights>2014 Elsevier Inc. All rights reserved 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-793028d6ba62a3c6504dc337e196b69b0168b1b473b2afbd6bcb6455fd9ed5363</citedby><cites>FETCH-LOGICAL-c660t-793028d6ba62a3c6504dc337e196b69b0168b1b473b2afbd6bcb6455fd9ed5363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089662731401174X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25640077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weng, Hao-Jui</creatorcontrib><creatorcontrib>Patel, Kush N.</creatorcontrib><creatorcontrib>Jeske, Nathaniel A.</creatorcontrib><creatorcontrib>Bierbower, Sonya M.</creatorcontrib><creatorcontrib>Zou, Wangyuan</creatorcontrib><creatorcontrib>Tiwari, Vinod</creatorcontrib><creatorcontrib>Zheng, Qin</creatorcontrib><creatorcontrib>Tang, Zongxiang</creatorcontrib><creatorcontrib>Mo, Gary C.H.</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Geng, Yixun</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Guan, Yun</creatorcontrib><creatorcontrib>Akopian, Armen N.</creatorcontrib><creatorcontrib>Dong, Xinzhong</creatorcontrib><title>Tmem100 Is a Regulator of TRPA1-TRPV1 Complex and Contributes to Persistent Pain</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>TRPA1 and TRPV1 are crucial pain mediators, but how their interaction contributes to persistent pain is unknown. Here, we identify Tmem100 as a potentiating modulator of TRPA1-V1 complexes. Tmem100 is coexpressed and forms a complex with TRPA1 and TRPV1 in DRG neurons. Tmem100-deficient mice show a reduction in inflammatory mechanical hyperalgesia and TRPA1- but not TRPV1-mediated pain. Single-channel recording in a heterologous system reveals that Tmem100 selectively potentiates TRPA1 activity in a TRPV1-dependent manner. Mechanistically, Tmem100 weakens the association of TRPA1 and TRPV1, thereby releasing the inhibition of TRPA1 by TRPV1. A Tmem100 mutant, Tmem100-3Q, exerts the opposite effect; i.e., it enhances the association of TRPA1 and TRPV1 and strongly inhibits TRPA1. Strikingly, a cell-permeable peptide (CPP) containing the C-terminal sequence of Tmem100-3Q mimics its effect and inhibits persistent pain. Our study unveils a context-dependent modulation of the TRPA1-V1 complex, and Tmem100-3Q CPP is a promising pain therapy. •A unique context-dependent TRP channel regulation by disinhibitory mechanism•Tmem100 as a potentiating modulator of TRPA1 in the TRPA1-TRPV1 complex•Tmem100-mutant-derived cell-permeable peptide as novel pain therapeutics•The first mechanistic study of Tmem100, an important gene implicated in diseases TRPA1 and TRPV1 are crucial pain mediators, but how their interaction contributes to persistent pain is unknown. Weng et al. identify Tmem100 as a potentiating modulator of TRPA1-V1 complexes. Targeting this modulation, they developed a strategy for blocking persistent pain.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - genetics</subject><subject>Animals</subject><subject>Biophysical Phenomena - drug effects</subject><subject>Biophysical Phenomena - genetics</subject><subject>Capsaicin - toxicity</subject><subject>Cells, Cultured</subject><subject>CHO Cells</subject><subject>Cricetulus</subject><subject>Disease Models, Animal</subject><subject>Electric Stimulation</subject><subject>Ganglia, Spinal - cytology</subject><subject>Ganglia, Spinal - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hyperalgesia - genetics</subject><subject>Hyperalgesia - metabolism</subject><subject>Male</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Pain</subject><subject>Pain - chemically induced</subject><subject>Pain - metabolism</subject><subject>Pain - pathology</subject><subject>Pain Measurement</subject><subject>Peptides</subject><subject>Physical Stimulation</subject><subject>Proteins</subject><subject>Studies</subject><subject>Transient Receptor Potential Channels - metabolism</subject><subject>TRPA1 Cation Channel</subject><subject>TRPV Cation Channels - metabolism</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuLFDEUhYMoTjv6D0QCbtxUmVclnY0wND4GBmyG1m1IUrfGNFVJm1QN-u9N0-P4WIibJJDvnnvvOQg9p6SlhMrX-zbCklNsGaGipawlsnuAVpRo1Qiq9UO0ImstG8kUP0NPStmTCnaaPkZnrJOCEKVWaLubYKKE4MuCLb6Gm2W0c8o4DXh3vb2gTT0_U7xJ02GEb9jGvr7jnINbZih4TngLuYQyQ5zx1ob4FD0a7Fjg2d19jj69e7vbfGiuPr6_3FxcNV5KMjdKc8LWvXRWMsu97IjoPecKqJZOalc3XDvqhOKO2cFV0Dspum7oNfQdl_wcvTnpHhY3Qe9r_2xHc8hhsvm7STaYP39i-GJu0q0RnEvG1lXg1Z1ATl8XKLOZQvEwjjZCWoqhUgpGGJHsP9BO8RoDVRV9-Re6T0uO1YkjJYkgWh-HFyfK51RKhuF-bkrMMV2zN6d0zTFdQ5mp6dayF7_vfF_0M85fpkB1_jZANsUHiB76kMHPpk_h3x1-ACYita0</recordid><startdate>20150218</startdate><enddate>20150218</enddate><creator>Weng, Hao-Jui</creator><creator>Patel, Kush N.</creator><creator>Jeske, Nathaniel A.</creator><creator>Bierbower, Sonya M.</creator><creator>Zou, Wangyuan</creator><creator>Tiwari, Vinod</creator><creator>Zheng, Qin</creator><creator>Tang, Zongxiang</creator><creator>Mo, Gary C.H.</creator><creator>Wang, Yan</creator><creator>Geng, Yixun</creator><creator>Zhang, Jin</creator><creator>Guan, Yun</creator><creator>Akopian, Armen N.</creator><creator>Dong, Xinzhong</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150218</creationdate><title>Tmem100 Is a Regulator of TRPA1-TRPV1 Complex and Contributes to Persistent Pain</title><author>Weng, Hao-Jui ; Patel, Kush N. ; Jeske, Nathaniel A. ; Bierbower, Sonya M. ; Zou, Wangyuan ; Tiwari, Vinod ; Zheng, Qin ; Tang, Zongxiang ; Mo, Gary C.H. ; Wang, Yan ; Geng, Yixun ; Zhang, Jin ; Guan, Yun ; Akopian, Armen N. ; Dong, Xinzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-793028d6ba62a3c6504dc337e196b69b0168b1b473b2afbd6bcb6455fd9ed5363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - genetics</topic><topic>Animals</topic><topic>Biophysical Phenomena - drug effects</topic><topic>Biophysical Phenomena - genetics</topic><topic>Capsaicin - toxicity</topic><topic>Cells, Cultured</topic><topic>CHO Cells</topic><topic>Cricetulus</topic><topic>Disease Models, Animal</topic><topic>Electric Stimulation</topic><topic>Ganglia, Spinal - cytology</topic><topic>Ganglia, Spinal - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hyperalgesia - genetics</topic><topic>Hyperalgesia - metabolism</topic><topic>Male</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Pain</topic><topic>Pain - chemically induced</topic><topic>Pain - metabolism</topic><topic>Pain - pathology</topic><topic>Pain Measurement</topic><topic>Peptides</topic><topic>Physical Stimulation</topic><topic>Proteins</topic><topic>Studies</topic><topic>Transient Receptor Potential Channels - metabolism</topic><topic>TRPA1 Cation Channel</topic><topic>TRPV Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Hao-Jui</creatorcontrib><creatorcontrib>Patel, Kush N.</creatorcontrib><creatorcontrib>Jeske, Nathaniel A.</creatorcontrib><creatorcontrib>Bierbower, Sonya M.</creatorcontrib><creatorcontrib>Zou, Wangyuan</creatorcontrib><creatorcontrib>Tiwari, Vinod</creatorcontrib><creatorcontrib>Zheng, Qin</creatorcontrib><creatorcontrib>Tang, Zongxiang</creatorcontrib><creatorcontrib>Mo, Gary C.H.</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Geng, Yixun</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Guan, Yun</creatorcontrib><creatorcontrib>Akopian, Armen N.</creatorcontrib><creatorcontrib>Dong, Xinzhong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Hao-Jui</au><au>Patel, Kush N.</au><au>Jeske, Nathaniel A.</au><au>Bierbower, Sonya M.</au><au>Zou, Wangyuan</au><au>Tiwari, Vinod</au><au>Zheng, Qin</au><au>Tang, Zongxiang</au><au>Mo, Gary C.H.</au><au>Wang, Yan</au><au>Geng, Yixun</au><au>Zhang, Jin</au><au>Guan, Yun</au><au>Akopian, Armen N.</au><au>Dong, Xinzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tmem100 Is a Regulator of TRPA1-TRPV1 Complex and Contributes to Persistent Pain</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2015-02-18</date><risdate>2015</risdate><volume>85</volume><issue>4</issue><spage>833</spage><epage>846</epage><pages>833-846</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>TRPA1 and TRPV1 are crucial pain mediators, but how their interaction contributes to persistent pain is unknown. Here, we identify Tmem100 as a potentiating modulator of TRPA1-V1 complexes. Tmem100 is coexpressed and forms a complex with TRPA1 and TRPV1 in DRG neurons. Tmem100-deficient mice show a reduction in inflammatory mechanical hyperalgesia and TRPA1- but not TRPV1-mediated pain. Single-channel recording in a heterologous system reveals that Tmem100 selectively potentiates TRPA1 activity in a TRPV1-dependent manner. Mechanistically, Tmem100 weakens the association of TRPA1 and TRPV1, thereby releasing the inhibition of TRPA1 by TRPV1. A Tmem100 mutant, Tmem100-3Q, exerts the opposite effect; i.e., it enhances the association of TRPA1 and TRPV1 and strongly inhibits TRPA1. Strikingly, a cell-permeable peptide (CPP) containing the C-terminal sequence of Tmem100-3Q mimics its effect and inhibits persistent pain. Our study unveils a context-dependent modulation of the TRPA1-V1 complex, and Tmem100-3Q CPP is a promising pain therapy. •A unique context-dependent TRP channel regulation by disinhibitory mechanism•Tmem100 as a potentiating modulator of TRPA1 in the TRPA1-TRPV1 complex•Tmem100-mutant-derived cell-permeable peptide as novel pain therapeutics•The first mechanistic study of Tmem100, an important gene implicated in diseases TRPA1 and TRPV1 are crucial pain mediators, but how their interaction contributes to persistent pain is unknown. Weng et al. identify Tmem100 as a potentiating modulator of TRPA1-V1 complexes. Targeting this modulation, they developed a strategy for blocking persistent pain.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25640077</pmid><doi>10.1016/j.neuron.2014.12.065</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2015-02, Vol.85 (4), p.833-846
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4336228
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Action Potentials - drug effects
Action Potentials - genetics
Animals
Biophysical Phenomena - drug effects
Biophysical Phenomena - genetics
Capsaicin - toxicity
Cells, Cultured
CHO Cells
Cricetulus
Disease Models, Animal
Electric Stimulation
Ganglia, Spinal - cytology
Ganglia, Spinal - metabolism
HEK293 Cells
Humans
Hyperalgesia - genetics
Hyperalgesia - metabolism
Male
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Neurons
Neurons - drug effects
Neurons - physiology
Pain
Pain - chemically induced
Pain - metabolism
Pain - pathology
Pain Measurement
Peptides
Physical Stimulation
Proteins
Studies
Transient Receptor Potential Channels - metabolism
TRPA1 Cation Channel
TRPV Cation Channels - metabolism
title Tmem100 Is a Regulator of TRPA1-TRPV1 Complex and Contributes to Persistent Pain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tmem100%20Is%20a%20Regulator%20of%20TRPA1-TRPV1%20Complex%20and%20Contributes%20to%20Persistent%20Pain&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Weng,%20Hao-Jui&rft.date=2015-02-18&rft.volume=85&rft.issue=4&rft.spage=833&rft.epage=846&rft.pages=833-846&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2014.12.065&rft_dat=%3Cproquest_pubme%3E3595546751%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656040996&rft_id=info:pmid/25640077&rft_els_id=S089662731401174X&rfr_iscdi=true