Regulation of Gene Transcription by Voltage-gated L-type Calcium Channel, Cav1.3

Cav1.3 L-type Ca2+ channel is known to be highly expressed in neurons and neuroendocrine cells. However, we have previously demonstrated that the Cav1.3 channel is also expressed in atria and pacemaking cells in the heart. The significance of the tissue-specific expression of the channel is underpin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2015-02, Vol.290 (8), p.4663-4676
Hauptverfasser: Lu, Ling, Sirish, Padmini, Zhang, Zheng, Woltz, Ryan L., Li, Ning, Timofeyev, Valeriy, Knowlton, Anne A., Zhang, Xiao-Dong, Yamoah, Ebenezer N., Chiamvimonvat, Nipavan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4676
container_issue 8
container_start_page 4663
container_title The Journal of biological chemistry
container_volume 290
creator Lu, Ling
Sirish, Padmini
Zhang, Zheng
Woltz, Ryan L.
Li, Ning
Timofeyev, Valeriy
Knowlton, Anne A.
Zhang, Xiao-Dong
Yamoah, Ebenezer N.
Chiamvimonvat, Nipavan
description Cav1.3 L-type Ca2+ channel is known to be highly expressed in neurons and neuroendocrine cells. However, we have previously demonstrated that the Cav1.3 channel is also expressed in atria and pacemaking cells in the heart. The significance of the tissue-specific expression of the channel is underpinned by our previous demonstration of atrial fibrillation in a Cav1.3 null mutant mouse model. Indeed, a recent study has confirmed the critical roles of Cav1.3 in the human heart (Baig, S. M., Koschak, A., Lieb, A., Gebhart, M., Dafinger, C., Nürnberg, G., Ali, A., Ahmad, I., Sinnegger-Brauns, M. J., Brandt, N., Engel, J., Mangoni, M. E., Farooq, M., Khan, H. U., Nürnberg, P., Striessnig, J., and Bolz, H. J. (2011) Nat. Neurosci. 14, 77–84). These studies suggest that detailed knowledge of Cav1.3 may have broad therapeutic ramifications in the treatment of cardiac arrhythmias. Here, we tested the hypothesis that there is a functional cross-talk between the Cav1.3 channel and a small conductance Ca2+-activated K+ channel (SK2), which we have documented to be highly expressed in human and mouse atrial myocytes. Specifically, we tested the hypothesis that the C terminus of Cav1.3 may translocate to the nucleus where it functions as a transcriptional factor. Here, we reported for the first time that the C terminus of Cav1.3 translocates to the nucleus where it functions as a transcriptional regulator to modulate the function of Ca2+-activated K+ channels in atrial myocytes. Nuclear translocation of the C-terminal domain of Cav1.3 is directly regulated by intracellular Ca2+. Utilizing a Cav1.3 null mutant mouse model, we demonstrate that ablation of Cav1.3 results in a decrease in the protein expression of myosin light chain 2, which interacts and increases the membrane localization of SK2 channels. Background: Cav1.3 Ca2+ channel is highly expressed in atria and pacemaking cells in the heart. Results: The C terminus of the Cav1.3 Ca2+ channel can translocate into the nucleus. Conclusion: The C terminus of Cav1.3 can function as a transcriptional regulator to regulate Ca2+-activated K+ channels. Significance: New insights into the cross-talk between ion channels may have broad therapeutic ramifications beyond cardiac myocytes.
doi_str_mv 10.1074/jbc.M114.586883
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4335206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819468750</els_id><sourcerecordid>1811907200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-d88bffe95b862b84d77d727005d64763fdd66b197871c6957c3fa58d5d5872763</originalsourceid><addsrcrecordid>eNqFkctrGzEQh0VpaJy0597KHnvoOnqsHnspFNM8wKGlpCE3oZVmHYW15Eq7Bv_3kesktIdSXQZGn36M5kPoPcFzgmVz9tDZ-TUhzZwroRR7hWYEK1YzTu5eoxnGlNQt5eoYneT8gMtpWvIGHVPOmaINmaHvP2A1DWb0MVSxry4gQHWTTMg2-c3vbrerbuMwmhXUKzOCq5b1uNtAtTCD9dO6WtybEGD4VBpbMmdv0VFvhgzvnuop-nn-9WZxWS-_XVwtvixr20gx1k6pru-h5Z0StFONk9JJKjHmThSA9c4J0ZFWKkmsaLm0rDdcOe64Kpxgp-jzIXczdWtwFsKYzKA3ya9N2ulovP77Jvh7vYpb3TDGKd4HfHwKSPHXBHnUa58tDIMJEKesiSKkxZJi_H9UlKEwF5wW9OyA2hRzTtC_TESw3ivTRZneK9MHZeXFhz8_8sI_OypAewCgrHPrIelsPQQLziewo3bR_zP8EffwpFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658705652</pqid></control><display><type>article</type><title>Regulation of Gene Transcription by Voltage-gated L-type Calcium Channel, Cav1.3</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lu, Ling ; Sirish, Padmini ; Zhang, Zheng ; Woltz, Ryan L. ; Li, Ning ; Timofeyev, Valeriy ; Knowlton, Anne A. ; Zhang, Xiao-Dong ; Yamoah, Ebenezer N. ; Chiamvimonvat, Nipavan</creator><creatorcontrib>Lu, Ling ; Sirish, Padmini ; Zhang, Zheng ; Woltz, Ryan L. ; Li, Ning ; Timofeyev, Valeriy ; Knowlton, Anne A. ; Zhang, Xiao-Dong ; Yamoah, Ebenezer N. ; Chiamvimonvat, Nipavan</creatorcontrib><description>Cav1.3 L-type Ca2+ channel is known to be highly expressed in neurons and neuroendocrine cells. However, we have previously demonstrated that the Cav1.3 channel is also expressed in atria and pacemaking cells in the heart. The significance of the tissue-specific expression of the channel is underpinned by our previous demonstration of atrial fibrillation in a Cav1.3 null mutant mouse model. Indeed, a recent study has confirmed the critical roles of Cav1.3 in the human heart (Baig, S. M., Koschak, A., Lieb, A., Gebhart, M., Dafinger, C., Nürnberg, G., Ali, A., Ahmad, I., Sinnegger-Brauns, M. J., Brandt, N., Engel, J., Mangoni, M. E., Farooq, M., Khan, H. U., Nürnberg, P., Striessnig, J., and Bolz, H. J. (2011) Nat. Neurosci. 14, 77–84). These studies suggest that detailed knowledge of Cav1.3 may have broad therapeutic ramifications in the treatment of cardiac arrhythmias. Here, we tested the hypothesis that there is a functional cross-talk between the Cav1.3 channel and a small conductance Ca2+-activated K+ channel (SK2), which we have documented to be highly expressed in human and mouse atrial myocytes. Specifically, we tested the hypothesis that the C terminus of Cav1.3 may translocate to the nucleus where it functions as a transcriptional factor. Here, we reported for the first time that the C terminus of Cav1.3 translocates to the nucleus where it functions as a transcriptional regulator to modulate the function of Ca2+-activated K+ channels in atrial myocytes. Nuclear translocation of the C-terminal domain of Cav1.3 is directly regulated by intracellular Ca2+. Utilizing a Cav1.3 null mutant mouse model, we demonstrate that ablation of Cav1.3 results in a decrease in the protein expression of myosin light chain 2, which interacts and increases the membrane localization of SK2 channels. Background: Cav1.3 Ca2+ channel is highly expressed in atria and pacemaking cells in the heart. Results: The C terminus of the Cav1.3 Ca2+ channel can translocate into the nucleus. Conclusion: The C terminus of Cav1.3 can function as a transcriptional regulator to regulate Ca2+-activated K+ channels. Significance: New insights into the cross-talk between ion channels may have broad therapeutic ramifications beyond cardiac myocytes.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.586883</identifier><identifier>PMID: 25538241</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Active Transport, Cell Nucleus - physiology ; Animals ; Calcium Channel ; Calcium Channels, L-Type - genetics ; Calcium Channels, L-Type - metabolism ; Cardiac Myosins - biosynthesis ; Cardiac Myosins - genetics ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Gene Expression Regulation - physiology ; Heart Atria - cytology ; Heart Atria - metabolism ; Humans ; Ion Channel ; Membrane Biology ; Mice ; Mice, Knockout ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - metabolism ; Myosin Light Chains - biosynthesis ; Myosin Light Chains - genetics ; Potassium Channel ; Protein Structure, Tertiary ; Transcription ; Transcription Factor ; Transcription, Genetic - physiology</subject><ispartof>The Journal of biological chemistry, 2015-02, Vol.290 (8), p.4663-4676</ispartof><rights>2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-d88bffe95b862b84d77d727005d64763fdd66b197871c6957c3fa58d5d5872763</citedby><cites>FETCH-LOGICAL-c476t-d88bffe95b862b84d77d727005d64763fdd66b197871c6957c3fa58d5d5872763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335206/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335206/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25538241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Ling</creatorcontrib><creatorcontrib>Sirish, Padmini</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Woltz, Ryan L.</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Timofeyev, Valeriy</creatorcontrib><creatorcontrib>Knowlton, Anne A.</creatorcontrib><creatorcontrib>Zhang, Xiao-Dong</creatorcontrib><creatorcontrib>Yamoah, Ebenezer N.</creatorcontrib><creatorcontrib>Chiamvimonvat, Nipavan</creatorcontrib><title>Regulation of Gene Transcription by Voltage-gated L-type Calcium Channel, Cav1.3</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Cav1.3 L-type Ca2+ channel is known to be highly expressed in neurons and neuroendocrine cells. However, we have previously demonstrated that the Cav1.3 channel is also expressed in atria and pacemaking cells in the heart. The significance of the tissue-specific expression of the channel is underpinned by our previous demonstration of atrial fibrillation in a Cav1.3 null mutant mouse model. Indeed, a recent study has confirmed the critical roles of Cav1.3 in the human heart (Baig, S. M., Koschak, A., Lieb, A., Gebhart, M., Dafinger, C., Nürnberg, G., Ali, A., Ahmad, I., Sinnegger-Brauns, M. J., Brandt, N., Engel, J., Mangoni, M. E., Farooq, M., Khan, H. U., Nürnberg, P., Striessnig, J., and Bolz, H. J. (2011) Nat. Neurosci. 14, 77–84). These studies suggest that detailed knowledge of Cav1.3 may have broad therapeutic ramifications in the treatment of cardiac arrhythmias. Here, we tested the hypothesis that there is a functional cross-talk between the Cav1.3 channel and a small conductance Ca2+-activated K+ channel (SK2), which we have documented to be highly expressed in human and mouse atrial myocytes. Specifically, we tested the hypothesis that the C terminus of Cav1.3 may translocate to the nucleus where it functions as a transcriptional factor. Here, we reported for the first time that the C terminus of Cav1.3 translocates to the nucleus where it functions as a transcriptional regulator to modulate the function of Ca2+-activated K+ channels in atrial myocytes. Nuclear translocation of the C-terminal domain of Cav1.3 is directly regulated by intracellular Ca2+. Utilizing a Cav1.3 null mutant mouse model, we demonstrate that ablation of Cav1.3 results in a decrease in the protein expression of myosin light chain 2, which interacts and increases the membrane localization of SK2 channels. Background: Cav1.3 Ca2+ channel is highly expressed in atria and pacemaking cells in the heart. Results: The C terminus of the Cav1.3 Ca2+ channel can translocate into the nucleus. Conclusion: The C terminus of Cav1.3 can function as a transcriptional regulator to regulate Ca2+-activated K+ channels. Significance: New insights into the cross-talk between ion channels may have broad therapeutic ramifications beyond cardiac myocytes.</description><subject>Active Transport, Cell Nucleus - physiology</subject><subject>Animals</subject><subject>Calcium Channel</subject><subject>Calcium Channels, L-Type - genetics</subject><subject>Calcium Channels, L-Type - metabolism</subject><subject>Cardiac Myosins - biosynthesis</subject><subject>Cardiac Myosins - genetics</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Gene Expression Regulation - physiology</subject><subject>Heart Atria - cytology</subject><subject>Heart Atria - metabolism</subject><subject>Humans</subject><subject>Ion Channel</subject><subject>Membrane Biology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myosin Light Chains - biosynthesis</subject><subject>Myosin Light Chains - genetics</subject><subject>Potassium Channel</subject><subject>Protein Structure, Tertiary</subject><subject>Transcription</subject><subject>Transcription Factor</subject><subject>Transcription, Genetic - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctrGzEQh0VpaJy0597KHnvoOnqsHnspFNM8wKGlpCE3oZVmHYW15Eq7Bv_3kesktIdSXQZGn36M5kPoPcFzgmVz9tDZ-TUhzZwroRR7hWYEK1YzTu5eoxnGlNQt5eoYneT8gMtpWvIGHVPOmaINmaHvP2A1DWb0MVSxry4gQHWTTMg2-c3vbrerbuMwmhXUKzOCq5b1uNtAtTCD9dO6WtybEGD4VBpbMmdv0VFvhgzvnuop-nn-9WZxWS-_XVwtvixr20gx1k6pru-h5Z0StFONk9JJKjHmThSA9c4J0ZFWKkmsaLm0rDdcOe64Kpxgp-jzIXczdWtwFsKYzKA3ya9N2ulovP77Jvh7vYpb3TDGKd4HfHwKSPHXBHnUa58tDIMJEKesiSKkxZJi_H9UlKEwF5wW9OyA2hRzTtC_TESw3ivTRZneK9MHZeXFhz8_8sI_OypAewCgrHPrIelsPQQLziewo3bR_zP8EffwpFA</recordid><startdate>20150220</startdate><enddate>20150220</enddate><creator>Lu, Ling</creator><creator>Sirish, Padmini</creator><creator>Zhang, Zheng</creator><creator>Woltz, Ryan L.</creator><creator>Li, Ning</creator><creator>Timofeyev, Valeriy</creator><creator>Knowlton, Anne A.</creator><creator>Zhang, Xiao-Dong</creator><creator>Yamoah, Ebenezer N.</creator><creator>Chiamvimonvat, Nipavan</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150220</creationdate><title>Regulation of Gene Transcription by Voltage-gated L-type Calcium Channel, Cav1.3</title><author>Lu, Ling ; Sirish, Padmini ; Zhang, Zheng ; Woltz, Ryan L. ; Li, Ning ; Timofeyev, Valeriy ; Knowlton, Anne A. ; Zhang, Xiao-Dong ; Yamoah, Ebenezer N. ; Chiamvimonvat, Nipavan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-d88bffe95b862b84d77d727005d64763fdd66b197871c6957c3fa58d5d5872763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Active Transport, Cell Nucleus - physiology</topic><topic>Animals</topic><topic>Calcium Channel</topic><topic>Calcium Channels, L-Type - genetics</topic><topic>Calcium Channels, L-Type - metabolism</topic><topic>Cardiac Myosins - biosynthesis</topic><topic>Cardiac Myosins - genetics</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Gene Expression Regulation - physiology</topic><topic>Heart Atria - cytology</topic><topic>Heart Atria - metabolism</topic><topic>Humans</topic><topic>Ion Channel</topic><topic>Membrane Biology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myosin Light Chains - biosynthesis</topic><topic>Myosin Light Chains - genetics</topic><topic>Potassium Channel</topic><topic>Protein Structure, Tertiary</topic><topic>Transcription</topic><topic>Transcription Factor</topic><topic>Transcription, Genetic - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Ling</creatorcontrib><creatorcontrib>Sirish, Padmini</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Woltz, Ryan L.</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Timofeyev, Valeriy</creatorcontrib><creatorcontrib>Knowlton, Anne A.</creatorcontrib><creatorcontrib>Zhang, Xiao-Dong</creatorcontrib><creatorcontrib>Yamoah, Ebenezer N.</creatorcontrib><creatorcontrib>Chiamvimonvat, Nipavan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Ling</au><au>Sirish, Padmini</au><au>Zhang, Zheng</au><au>Woltz, Ryan L.</au><au>Li, Ning</au><au>Timofeyev, Valeriy</au><au>Knowlton, Anne A.</au><au>Zhang, Xiao-Dong</au><au>Yamoah, Ebenezer N.</au><au>Chiamvimonvat, Nipavan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of Gene Transcription by Voltage-gated L-type Calcium Channel, Cav1.3</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2015-02-20</date><risdate>2015</risdate><volume>290</volume><issue>8</issue><spage>4663</spage><epage>4676</epage><pages>4663-4676</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Cav1.3 L-type Ca2+ channel is known to be highly expressed in neurons and neuroendocrine cells. However, we have previously demonstrated that the Cav1.3 channel is also expressed in atria and pacemaking cells in the heart. The significance of the tissue-specific expression of the channel is underpinned by our previous demonstration of atrial fibrillation in a Cav1.3 null mutant mouse model. Indeed, a recent study has confirmed the critical roles of Cav1.3 in the human heart (Baig, S. M., Koschak, A., Lieb, A., Gebhart, M., Dafinger, C., Nürnberg, G., Ali, A., Ahmad, I., Sinnegger-Brauns, M. J., Brandt, N., Engel, J., Mangoni, M. E., Farooq, M., Khan, H. U., Nürnberg, P., Striessnig, J., and Bolz, H. J. (2011) Nat. Neurosci. 14, 77–84). These studies suggest that detailed knowledge of Cav1.3 may have broad therapeutic ramifications in the treatment of cardiac arrhythmias. Here, we tested the hypothesis that there is a functional cross-talk between the Cav1.3 channel and a small conductance Ca2+-activated K+ channel (SK2), which we have documented to be highly expressed in human and mouse atrial myocytes. Specifically, we tested the hypothesis that the C terminus of Cav1.3 may translocate to the nucleus where it functions as a transcriptional factor. Here, we reported for the first time that the C terminus of Cav1.3 translocates to the nucleus where it functions as a transcriptional regulator to modulate the function of Ca2+-activated K+ channels in atrial myocytes. Nuclear translocation of the C-terminal domain of Cav1.3 is directly regulated by intracellular Ca2+. Utilizing a Cav1.3 null mutant mouse model, we demonstrate that ablation of Cav1.3 results in a decrease in the protein expression of myosin light chain 2, which interacts and increases the membrane localization of SK2 channels. Background: Cav1.3 Ca2+ channel is highly expressed in atria and pacemaking cells in the heart. Results: The C terminus of the Cav1.3 Ca2+ channel can translocate into the nucleus. Conclusion: The C terminus of Cav1.3 can function as a transcriptional regulator to regulate Ca2+-activated K+ channels. Significance: New insights into the cross-talk between ion channels may have broad therapeutic ramifications beyond cardiac myocytes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25538241</pmid><doi>10.1074/jbc.M114.586883</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2015-02, Vol.290 (8), p.4663-4676
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4335206
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Active Transport, Cell Nucleus - physiology
Animals
Calcium Channel
Calcium Channels, L-Type - genetics
Calcium Channels, L-Type - metabolism
Cardiac Myosins - biosynthesis
Cardiac Myosins - genetics
Cell Nucleus - genetics
Cell Nucleus - metabolism
Gene Expression Regulation - physiology
Heart Atria - cytology
Heart Atria - metabolism
Humans
Ion Channel
Membrane Biology
Mice
Mice, Knockout
Myocytes, Cardiac - cytology
Myocytes, Cardiac - metabolism
Myosin Light Chains - biosynthesis
Myosin Light Chains - genetics
Potassium Channel
Protein Structure, Tertiary
Transcription
Transcription Factor
Transcription, Genetic - physiology
title Regulation of Gene Transcription by Voltage-gated L-type Calcium Channel, Cav1.3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20Gene%20Transcription%20by%20Voltage-gated%20L-type%20Calcium%20Channel,%20Cav1.3&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Lu,%20Ling&rft.date=2015-02-20&rft.volume=290&rft.issue=8&rft.spage=4663&rft.epage=4676&rft.pages=4663-4676&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.586883&rft_dat=%3Cproquest_pubme%3E1811907200%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658705652&rft_id=info:pmid/25538241&rft_els_id=S0021925819468750&rfr_iscdi=true