Regulation of Gene Transcription by Voltage-gated L-type Calcium Channel, Cav1.3
Cav1.3 L-type Ca2+ channel is known to be highly expressed in neurons and neuroendocrine cells. However, we have previously demonstrated that the Cav1.3 channel is also expressed in atria and pacemaking cells in the heart. The significance of the tissue-specific expression of the channel is underpin...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2015-02, Vol.290 (8), p.4663-4676 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4676 |
---|---|
container_issue | 8 |
container_start_page | 4663 |
container_title | The Journal of biological chemistry |
container_volume | 290 |
creator | Lu, Ling Sirish, Padmini Zhang, Zheng Woltz, Ryan L. Li, Ning Timofeyev, Valeriy Knowlton, Anne A. Zhang, Xiao-Dong Yamoah, Ebenezer N. Chiamvimonvat, Nipavan |
description | Cav1.3 L-type Ca2+ channel is known to be highly expressed in neurons and neuroendocrine cells. However, we have previously demonstrated that the Cav1.3 channel is also expressed in atria and pacemaking cells in the heart. The significance of the tissue-specific expression of the channel is underpinned by our previous demonstration of atrial fibrillation in a Cav1.3 null mutant mouse model. Indeed, a recent study has confirmed the critical roles of Cav1.3 in the human heart (Baig, S. M., Koschak, A., Lieb, A., Gebhart, M., Dafinger, C., Nürnberg, G., Ali, A., Ahmad, I., Sinnegger-Brauns, M. J., Brandt, N., Engel, J., Mangoni, M. E., Farooq, M., Khan, H. U., Nürnberg, P., Striessnig, J., and Bolz, H. J. (2011) Nat. Neurosci. 14, 77–84). These studies suggest that detailed knowledge of Cav1.3 may have broad therapeutic ramifications in the treatment of cardiac arrhythmias. Here, we tested the hypothesis that there is a functional cross-talk between the Cav1.3 channel and a small conductance Ca2+-activated K+ channel (SK2), which we have documented to be highly expressed in human and mouse atrial myocytes. Specifically, we tested the hypothesis that the C terminus of Cav1.3 may translocate to the nucleus where it functions as a transcriptional factor. Here, we reported for the first time that the C terminus of Cav1.3 translocates to the nucleus where it functions as a transcriptional regulator to modulate the function of Ca2+-activated K+ channels in atrial myocytes. Nuclear translocation of the C-terminal domain of Cav1.3 is directly regulated by intracellular Ca2+. Utilizing a Cav1.3 null mutant mouse model, we demonstrate that ablation of Cav1.3 results in a decrease in the protein expression of myosin light chain 2, which interacts and increases the membrane localization of SK2 channels.
Background: Cav1.3 Ca2+ channel is highly expressed in atria and pacemaking cells in the heart.
Results: The C terminus of the Cav1.3 Ca2+ channel can translocate into the nucleus.
Conclusion: The C terminus of Cav1.3 can function as a transcriptional regulator to regulate Ca2+-activated K+ channels.
Significance: New insights into the cross-talk between ion channels may have broad therapeutic ramifications beyond cardiac myocytes. |
doi_str_mv | 10.1074/jbc.M114.586883 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4335206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819468750</els_id><sourcerecordid>1811907200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-d88bffe95b862b84d77d727005d64763fdd66b197871c6957c3fa58d5d5872763</originalsourceid><addsrcrecordid>eNqFkctrGzEQh0VpaJy0597KHnvoOnqsHnspFNM8wKGlpCE3oZVmHYW15Eq7Bv_3kesktIdSXQZGn36M5kPoPcFzgmVz9tDZ-TUhzZwroRR7hWYEK1YzTu5eoxnGlNQt5eoYneT8gMtpWvIGHVPOmaINmaHvP2A1DWb0MVSxry4gQHWTTMg2-c3vbrerbuMwmhXUKzOCq5b1uNtAtTCD9dO6WtybEGD4VBpbMmdv0VFvhgzvnuop-nn-9WZxWS-_XVwtvixr20gx1k6pru-h5Z0StFONk9JJKjHmThSA9c4J0ZFWKkmsaLm0rDdcOe64Kpxgp-jzIXczdWtwFsKYzKA3ya9N2ulovP77Jvh7vYpb3TDGKd4HfHwKSPHXBHnUa58tDIMJEKesiSKkxZJi_H9UlKEwF5wW9OyA2hRzTtC_TESw3ivTRZneK9MHZeXFhz8_8sI_OypAewCgrHPrIelsPQQLziewo3bR_zP8EffwpFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658705652</pqid></control><display><type>article</type><title>Regulation of Gene Transcription by Voltage-gated L-type Calcium Channel, Cav1.3</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lu, Ling ; Sirish, Padmini ; Zhang, Zheng ; Woltz, Ryan L. ; Li, Ning ; Timofeyev, Valeriy ; Knowlton, Anne A. ; Zhang, Xiao-Dong ; Yamoah, Ebenezer N. ; Chiamvimonvat, Nipavan</creator><creatorcontrib>Lu, Ling ; Sirish, Padmini ; Zhang, Zheng ; Woltz, Ryan L. ; Li, Ning ; Timofeyev, Valeriy ; Knowlton, Anne A. ; Zhang, Xiao-Dong ; Yamoah, Ebenezer N. ; Chiamvimonvat, Nipavan</creatorcontrib><description>Cav1.3 L-type Ca2+ channel is known to be highly expressed in neurons and neuroendocrine cells. However, we have previously demonstrated that the Cav1.3 channel is also expressed in atria and pacemaking cells in the heart. The significance of the tissue-specific expression of the channel is underpinned by our previous demonstration of atrial fibrillation in a Cav1.3 null mutant mouse model. Indeed, a recent study has confirmed the critical roles of Cav1.3 in the human heart (Baig, S. M., Koschak, A., Lieb, A., Gebhart, M., Dafinger, C., Nürnberg, G., Ali, A., Ahmad, I., Sinnegger-Brauns, M. J., Brandt, N., Engel, J., Mangoni, M. E., Farooq, M., Khan, H. U., Nürnberg, P., Striessnig, J., and Bolz, H. J. (2011) Nat. Neurosci. 14, 77–84). These studies suggest that detailed knowledge of Cav1.3 may have broad therapeutic ramifications in the treatment of cardiac arrhythmias. Here, we tested the hypothesis that there is a functional cross-talk between the Cav1.3 channel and a small conductance Ca2+-activated K+ channel (SK2), which we have documented to be highly expressed in human and mouse atrial myocytes. Specifically, we tested the hypothesis that the C terminus of Cav1.3 may translocate to the nucleus where it functions as a transcriptional factor. Here, we reported for the first time that the C terminus of Cav1.3 translocates to the nucleus where it functions as a transcriptional regulator to modulate the function of Ca2+-activated K+ channels in atrial myocytes. Nuclear translocation of the C-terminal domain of Cav1.3 is directly regulated by intracellular Ca2+. Utilizing a Cav1.3 null mutant mouse model, we demonstrate that ablation of Cav1.3 results in a decrease in the protein expression of myosin light chain 2, which interacts and increases the membrane localization of SK2 channels.
Background: Cav1.3 Ca2+ channel is highly expressed in atria and pacemaking cells in the heart.
Results: The C terminus of the Cav1.3 Ca2+ channel can translocate into the nucleus.
Conclusion: The C terminus of Cav1.3 can function as a transcriptional regulator to regulate Ca2+-activated K+ channels.
Significance: New insights into the cross-talk between ion channels may have broad therapeutic ramifications beyond cardiac myocytes.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.586883</identifier><identifier>PMID: 25538241</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Active Transport, Cell Nucleus - physiology ; Animals ; Calcium Channel ; Calcium Channels, L-Type - genetics ; Calcium Channels, L-Type - metabolism ; Cardiac Myosins - biosynthesis ; Cardiac Myosins - genetics ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Gene Expression Regulation - physiology ; Heart Atria - cytology ; Heart Atria - metabolism ; Humans ; Ion Channel ; Membrane Biology ; Mice ; Mice, Knockout ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - metabolism ; Myosin Light Chains - biosynthesis ; Myosin Light Chains - genetics ; Potassium Channel ; Protein Structure, Tertiary ; Transcription ; Transcription Factor ; Transcription, Genetic - physiology</subject><ispartof>The Journal of biological chemistry, 2015-02, Vol.290 (8), p.4663-4676</ispartof><rights>2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-d88bffe95b862b84d77d727005d64763fdd66b197871c6957c3fa58d5d5872763</citedby><cites>FETCH-LOGICAL-c476t-d88bffe95b862b84d77d727005d64763fdd66b197871c6957c3fa58d5d5872763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335206/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335206/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25538241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Ling</creatorcontrib><creatorcontrib>Sirish, Padmini</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Woltz, Ryan L.</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Timofeyev, Valeriy</creatorcontrib><creatorcontrib>Knowlton, Anne A.</creatorcontrib><creatorcontrib>Zhang, Xiao-Dong</creatorcontrib><creatorcontrib>Yamoah, Ebenezer N.</creatorcontrib><creatorcontrib>Chiamvimonvat, Nipavan</creatorcontrib><title>Regulation of Gene Transcription by Voltage-gated L-type Calcium Channel, Cav1.3</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Cav1.3 L-type Ca2+ channel is known to be highly expressed in neurons and neuroendocrine cells. However, we have previously demonstrated that the Cav1.3 channel is also expressed in atria and pacemaking cells in the heart. The significance of the tissue-specific expression of the channel is underpinned by our previous demonstration of atrial fibrillation in a Cav1.3 null mutant mouse model. Indeed, a recent study has confirmed the critical roles of Cav1.3 in the human heart (Baig, S. M., Koschak, A., Lieb, A., Gebhart, M., Dafinger, C., Nürnberg, G., Ali, A., Ahmad, I., Sinnegger-Brauns, M. J., Brandt, N., Engel, J., Mangoni, M. E., Farooq, M., Khan, H. U., Nürnberg, P., Striessnig, J., and Bolz, H. J. (2011) Nat. Neurosci. 14, 77–84). These studies suggest that detailed knowledge of Cav1.3 may have broad therapeutic ramifications in the treatment of cardiac arrhythmias. Here, we tested the hypothesis that there is a functional cross-talk between the Cav1.3 channel and a small conductance Ca2+-activated K+ channel (SK2), which we have documented to be highly expressed in human and mouse atrial myocytes. Specifically, we tested the hypothesis that the C terminus of Cav1.3 may translocate to the nucleus where it functions as a transcriptional factor. Here, we reported for the first time that the C terminus of Cav1.3 translocates to the nucleus where it functions as a transcriptional regulator to modulate the function of Ca2+-activated K+ channels in atrial myocytes. Nuclear translocation of the C-terminal domain of Cav1.3 is directly regulated by intracellular Ca2+. Utilizing a Cav1.3 null mutant mouse model, we demonstrate that ablation of Cav1.3 results in a decrease in the protein expression of myosin light chain 2, which interacts and increases the membrane localization of SK2 channels.
Background: Cav1.3 Ca2+ channel is highly expressed in atria and pacemaking cells in the heart.
Results: The C terminus of the Cav1.3 Ca2+ channel can translocate into the nucleus.
Conclusion: The C terminus of Cav1.3 can function as a transcriptional regulator to regulate Ca2+-activated K+ channels.
Significance: New insights into the cross-talk between ion channels may have broad therapeutic ramifications beyond cardiac myocytes.</description><subject>Active Transport, Cell Nucleus - physiology</subject><subject>Animals</subject><subject>Calcium Channel</subject><subject>Calcium Channels, L-Type - genetics</subject><subject>Calcium Channels, L-Type - metabolism</subject><subject>Cardiac Myosins - biosynthesis</subject><subject>Cardiac Myosins - genetics</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Gene Expression Regulation - physiology</subject><subject>Heart Atria - cytology</subject><subject>Heart Atria - metabolism</subject><subject>Humans</subject><subject>Ion Channel</subject><subject>Membrane Biology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myosin Light Chains - biosynthesis</subject><subject>Myosin Light Chains - genetics</subject><subject>Potassium Channel</subject><subject>Protein Structure, Tertiary</subject><subject>Transcription</subject><subject>Transcription Factor</subject><subject>Transcription, Genetic - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctrGzEQh0VpaJy0597KHnvoOnqsHnspFNM8wKGlpCE3oZVmHYW15Eq7Bv_3kesktIdSXQZGn36M5kPoPcFzgmVz9tDZ-TUhzZwroRR7hWYEK1YzTu5eoxnGlNQt5eoYneT8gMtpWvIGHVPOmaINmaHvP2A1DWb0MVSxry4gQHWTTMg2-c3vbrerbuMwmhXUKzOCq5b1uNtAtTCD9dO6WtybEGD4VBpbMmdv0VFvhgzvnuop-nn-9WZxWS-_XVwtvixr20gx1k6pru-h5Z0StFONk9JJKjHmThSA9c4J0ZFWKkmsaLm0rDdcOe64Kpxgp-jzIXczdWtwFsKYzKA3ya9N2ulovP77Jvh7vYpb3TDGKd4HfHwKSPHXBHnUa58tDIMJEKesiSKkxZJi_H9UlKEwF5wW9OyA2hRzTtC_TESw3ivTRZneK9MHZeXFhz8_8sI_OypAewCgrHPrIelsPQQLziewo3bR_zP8EffwpFA</recordid><startdate>20150220</startdate><enddate>20150220</enddate><creator>Lu, Ling</creator><creator>Sirish, Padmini</creator><creator>Zhang, Zheng</creator><creator>Woltz, Ryan L.</creator><creator>Li, Ning</creator><creator>Timofeyev, Valeriy</creator><creator>Knowlton, Anne A.</creator><creator>Zhang, Xiao-Dong</creator><creator>Yamoah, Ebenezer N.</creator><creator>Chiamvimonvat, Nipavan</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150220</creationdate><title>Regulation of Gene Transcription by Voltage-gated L-type Calcium Channel, Cav1.3</title><author>Lu, Ling ; Sirish, Padmini ; Zhang, Zheng ; Woltz, Ryan L. ; Li, Ning ; Timofeyev, Valeriy ; Knowlton, Anne A. ; Zhang, Xiao-Dong ; Yamoah, Ebenezer N. ; Chiamvimonvat, Nipavan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-d88bffe95b862b84d77d727005d64763fdd66b197871c6957c3fa58d5d5872763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Active Transport, Cell Nucleus - physiology</topic><topic>Animals</topic><topic>Calcium Channel</topic><topic>Calcium Channels, L-Type - genetics</topic><topic>Calcium Channels, L-Type - metabolism</topic><topic>Cardiac Myosins - biosynthesis</topic><topic>Cardiac Myosins - genetics</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Gene Expression Regulation - physiology</topic><topic>Heart Atria - cytology</topic><topic>Heart Atria - metabolism</topic><topic>Humans</topic><topic>Ion Channel</topic><topic>Membrane Biology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myosin Light Chains - biosynthesis</topic><topic>Myosin Light Chains - genetics</topic><topic>Potassium Channel</topic><topic>Protein Structure, Tertiary</topic><topic>Transcription</topic><topic>Transcription Factor</topic><topic>Transcription, Genetic - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Ling</creatorcontrib><creatorcontrib>Sirish, Padmini</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Woltz, Ryan L.</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Timofeyev, Valeriy</creatorcontrib><creatorcontrib>Knowlton, Anne A.</creatorcontrib><creatorcontrib>Zhang, Xiao-Dong</creatorcontrib><creatorcontrib>Yamoah, Ebenezer N.</creatorcontrib><creatorcontrib>Chiamvimonvat, Nipavan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Ling</au><au>Sirish, Padmini</au><au>Zhang, Zheng</au><au>Woltz, Ryan L.</au><au>Li, Ning</au><au>Timofeyev, Valeriy</au><au>Knowlton, Anne A.</au><au>Zhang, Xiao-Dong</au><au>Yamoah, Ebenezer N.</au><au>Chiamvimonvat, Nipavan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of Gene Transcription by Voltage-gated L-type Calcium Channel, Cav1.3</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2015-02-20</date><risdate>2015</risdate><volume>290</volume><issue>8</issue><spage>4663</spage><epage>4676</epage><pages>4663-4676</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Cav1.3 L-type Ca2+ channel is known to be highly expressed in neurons and neuroendocrine cells. However, we have previously demonstrated that the Cav1.3 channel is also expressed in atria and pacemaking cells in the heart. The significance of the tissue-specific expression of the channel is underpinned by our previous demonstration of atrial fibrillation in a Cav1.3 null mutant mouse model. Indeed, a recent study has confirmed the critical roles of Cav1.3 in the human heart (Baig, S. M., Koschak, A., Lieb, A., Gebhart, M., Dafinger, C., Nürnberg, G., Ali, A., Ahmad, I., Sinnegger-Brauns, M. J., Brandt, N., Engel, J., Mangoni, M. E., Farooq, M., Khan, H. U., Nürnberg, P., Striessnig, J., and Bolz, H. J. (2011) Nat. Neurosci. 14, 77–84). These studies suggest that detailed knowledge of Cav1.3 may have broad therapeutic ramifications in the treatment of cardiac arrhythmias. Here, we tested the hypothesis that there is a functional cross-talk between the Cav1.3 channel and a small conductance Ca2+-activated K+ channel (SK2), which we have documented to be highly expressed in human and mouse atrial myocytes. Specifically, we tested the hypothesis that the C terminus of Cav1.3 may translocate to the nucleus where it functions as a transcriptional factor. Here, we reported for the first time that the C terminus of Cav1.3 translocates to the nucleus where it functions as a transcriptional regulator to modulate the function of Ca2+-activated K+ channels in atrial myocytes. Nuclear translocation of the C-terminal domain of Cav1.3 is directly regulated by intracellular Ca2+. Utilizing a Cav1.3 null mutant mouse model, we demonstrate that ablation of Cav1.3 results in a decrease in the protein expression of myosin light chain 2, which interacts and increases the membrane localization of SK2 channels.
Background: Cav1.3 Ca2+ channel is highly expressed in atria and pacemaking cells in the heart.
Results: The C terminus of the Cav1.3 Ca2+ channel can translocate into the nucleus.
Conclusion: The C terminus of Cav1.3 can function as a transcriptional regulator to regulate Ca2+-activated K+ channels.
Significance: New insights into the cross-talk between ion channels may have broad therapeutic ramifications beyond cardiac myocytes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25538241</pmid><doi>10.1074/jbc.M114.586883</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2015-02, Vol.290 (8), p.4663-4676 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4335206 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Active Transport, Cell Nucleus - physiology Animals Calcium Channel Calcium Channels, L-Type - genetics Calcium Channels, L-Type - metabolism Cardiac Myosins - biosynthesis Cardiac Myosins - genetics Cell Nucleus - genetics Cell Nucleus - metabolism Gene Expression Regulation - physiology Heart Atria - cytology Heart Atria - metabolism Humans Ion Channel Membrane Biology Mice Mice, Knockout Myocytes, Cardiac - cytology Myocytes, Cardiac - metabolism Myosin Light Chains - biosynthesis Myosin Light Chains - genetics Potassium Channel Protein Structure, Tertiary Transcription Transcription Factor Transcription, Genetic - physiology |
title | Regulation of Gene Transcription by Voltage-gated L-type Calcium Channel, Cav1.3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20Gene%20Transcription%20by%20Voltage-gated%20L-type%20Calcium%20Channel,%20Cav1.3&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Lu,%20Ling&rft.date=2015-02-20&rft.volume=290&rft.issue=8&rft.spage=4663&rft.epage=4676&rft.pages=4663-4676&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.586883&rft_dat=%3Cproquest_pubme%3E1811907200%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658705652&rft_id=info:pmid/25538241&rft_els_id=S0021925819468750&rfr_iscdi=true |