Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia

Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy despite conti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Leukemia 2015-03, Vol.29 (3), p.586-597
Hauptverfasser: Eiring, A M, Page, B D G, Kraft, I L, Mason, C C, Vellore, N A, Resetca, D, Zabriskie, M S, Zhang, T Y, Khorashad, J S, Engar, A J, Reynolds, K R, Anderson, D J, Senina, A, Pomicter, A D, Arpin, C C, Ahmad, S, Heaton, W L, Tantravahi, S K, Todic, A, Colaguori, R, Moriggl, R, Wilson, D J, Baron, R, O'Hare, T, Gunning, P T, Deininger, M W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 597
container_issue 3
container_start_page 586
container_title Leukemia
container_volume 29
creator Eiring, A M
Page, B D G
Kraft, I L
Mason, C C
Vellore, N A
Resetca, D
Zabriskie, M S
Zhang, T Y
Khorashad, J S
Engar, A J
Reynolds, K R
Anderson, D J
Senina, A
Pomicter, A D
Arpin, C C
Ahmad, S
Heaton, W L
Tantravahi, S K
Todic, A
Colaguori, R
Moriggl, R
Wilson, D J
Baron, R
O'Hare, T
Gunning, P T
Deininger, M W
description Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy despite continued suppression of BCR-ABL1 kinase activity, a situation termed BCR-ABL1 kinase-independent TKI resistance. Here, we identified activation of signal transducer and activator of transcription 3 (STAT3) by extrinsic or intrinsic mechanisms as an essential feature of BCR-ABL1 kinase-independent TKI resistance. By combining synthetic chemistry, in vitro reporter assays, and molecular dynamics-guided rational inhibitor design and high-throughput screening, we discovered BP-5-087, a potent and selective STAT3 SH2 domain inhibitor that reduces STAT3 phosphorylation and nuclear transactivation. Computational simulations, fluorescence polarization assays and hydrogen–deuterium exchange assays establish direct engagement of STAT3 by BP-5-087 and provide a high-resolution view of the STAT3 SH2 domain/BP-5-087 interface. In primary cells from chronic myeloid leukemia (CML) patients with BCR-ABL1 kinase-independent TKI resistance, BP-5-087 (1.0 μ M ) restored TKI sensitivity to therapy-resistant CML progenitor cells, including leukemic stem cells. Our findings implicate STAT3 as a critical signaling node in BCR-ABL1 kinase-independent TKI resistance, and suggest that BP-5-087 has clinical utility for treating malignancies characterized by STAT3 activation.
doi_str_mv 10.1038/leu.2014.245
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4334758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A610203834</galeid><sourcerecordid>A610203834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c710t-d89e8fcce0e67fba1e51cc5ae30c759ee30ddc962044e4798ce4b03e234e31d03</originalsourceid><addsrcrecordid>eNqNkt-L1DAQx4so3rr65rMUBPHBrknzo-2L0Fv8BQuCrs8hm063OdNkTVJh_3tT9jz35FDJw4SZT75DZr5Z9hSjFUakfm1gWpUI01VJ2b1sgWnFC8YYvp8tUF1XBW9KepE9CuEKobnIH2YXJcOEUtYsssPajTttocu_bNstyaXt8sv156K93OBc20HvdNTOpms3KQh5ONo4QNQqNxAHaXQ8plqecl4ejoWHoEOUNuZq8M4mbDyCcbpL-PQNRi0fZw96aQI8uY7L7Ou7t9v1h2Lz6f3HdbspVIVRLLq6gbpXChDwqt9JDAwrxSQQpCrWQIpdpxpeIkqBVk2tgO4QgZJQILhDZJm9Oekept0InQIbvTTi4PUo_VE4qcXtitWD2LsfghJCK1YngZfXAt59nyBEMeqgwBhpwU1BYF5xwjip-X-gHJOywmRGn_-BXrnJ2zQJURKCOcEVQn-jkhaiTV1i-pvaSwNC296lj6i5tWgpYpg3deq7zFZ3UOl0aR3KWeh1yt968OLswQDSxCE4M80-CKLlGJXJd4T-CzxXfHUClXcheOhv1oCRmE0skjvEbGKRTJzwZ-eru4F_uTYBxQkIqWT34M_Gc5fgT9iE-PY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660498214</pqid></control><display><type>article</type><title>Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia</title><source>MEDLINE</source><source>Nature</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Eiring, A M ; Page, B D G ; Kraft, I L ; Mason, C C ; Vellore, N A ; Resetca, D ; Zabriskie, M S ; Zhang, T Y ; Khorashad, J S ; Engar, A J ; Reynolds, K R ; Anderson, D J ; Senina, A ; Pomicter, A D ; Arpin, C C ; Ahmad, S ; Heaton, W L ; Tantravahi, S K ; Todic, A ; Colaguori, R ; Moriggl, R ; Wilson, D J ; Baron, R ; O'Hare, T ; Gunning, P T ; Deininger, M W</creator><creatorcontrib>Eiring, A M ; Page, B D G ; Kraft, I L ; Mason, C C ; Vellore, N A ; Resetca, D ; Zabriskie, M S ; Zhang, T Y ; Khorashad, J S ; Engar, A J ; Reynolds, K R ; Anderson, D J ; Senina, A ; Pomicter, A D ; Arpin, C C ; Ahmad, S ; Heaton, W L ; Tantravahi, S K ; Todic, A ; Colaguori, R ; Moriggl, R ; Wilson, D J ; Baron, R ; O'Hare, T ; Gunning, P T ; Deininger, M W</creatorcontrib><description>Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy despite continued suppression of BCR-ABL1 kinase activity, a situation termed BCR-ABL1 kinase-independent TKI resistance. Here, we identified activation of signal transducer and activator of transcription 3 (STAT3) by extrinsic or intrinsic mechanisms as an essential feature of BCR-ABL1 kinase-independent TKI resistance. By combining synthetic chemistry, in vitro reporter assays, and molecular dynamics-guided rational inhibitor design and high-throughput screening, we discovered BP-5-087, a potent and selective STAT3 SH2 domain inhibitor that reduces STAT3 phosphorylation and nuclear transactivation. Computational simulations, fluorescence polarization assays and hydrogen–deuterium exchange assays establish direct engagement of STAT3 by BP-5-087 and provide a high-resolution view of the STAT3 SH2 domain/BP-5-087 interface. In primary cells from chronic myeloid leukemia (CML) patients with BCR-ABL1 kinase-independent TKI resistance, BP-5-087 (1.0 μ M ) restored TKI sensitivity to therapy-resistant CML progenitor cells, including leukemic stem cells. Our findings implicate STAT3 as a critical signaling node in BCR-ABL1 kinase-independent TKI resistance, and suggest that BP-5-087 has clinical utility for treating malignancies characterized by STAT3 activation.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/leu.2014.245</identifier><identifier>PMID: 25134459</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/95 ; 14/63 ; 38/77 ; 38/90 ; 42/41 ; 45/47 ; 631/154/309 ; 631/67/1990/283/1896 ; 692/699/67/1059/2326 ; 82/58 ; Activation ; Aminosalicylic Acids - chemical synthesis ; Aminosalicylic Acids - chemistry ; Aminosalicylic Acids - pharmacology ; Antineoplastic Agents - pharmacology ; Apoptosis - drug effects ; Assaying ; BCR-ABL protein ; Benzamides - pharmacology ; Cancer ; Cancer Research ; Care and treatment ; Cell Line, Tumor ; Chemistry ; Chromosomes ; Chronic myeloid leukemia ; Computer applications ; Computer simulation ; Critical Care Medicine ; Cytokines ; Dasatinib ; Deuterium ; Development and progression ; Drug Discovery ; Drug resistance ; Drug Resistance, Neoplasm - drug effects ; Drug therapy ; Enzyme inhibitors ; Enzymes ; Fluorescence ; Fluorescence polarization ; Fusion Proteins, bcr-abl - antagonists &amp; inhibitors ; Fusion Proteins, bcr-abl - genetics ; Fusion Proteins, bcr-abl - metabolism ; Gene Expression Regulation, Leukemic ; Gene mutations ; Genes, Reporter ; Genetic aspects ; Health aspects ; Hematology ; High-throughput screening ; Humans ; Imatinib Mesylate ; Inhibitors ; Intensive ; Internal Medicine ; Kinases ; Lethality ; Leukemia ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology ; Leukocytes, Mononuclear - drug effects ; Leukocytes, Mononuclear - metabolism ; Leukocytes, Mononuclear - pathology ; Luciferases - genetics ; Luciferases - metabolism ; Medical research ; Medicine ; Medicine &amp; Public Health ; Molecular Docking Simulation ; Molecular dynamics ; Mutation ; Myeloid leukemia ; Neoplastic Stem Cells - drug effects ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; Oncology ; Organic chemistry ; original-article ; Patient outcomes ; Patients ; Philadelphia chromosome ; Phosphorylation ; Piperazines - pharmacology ; Progenitor cells ; Protein Kinase Inhibitors - pharmacology ; Protein Structure, Tertiary ; Protein-tyrosine kinase ; Pyrimidines - pharmacology ; Regulation ; Regulatory approval ; Signal Transduction ; Small Molecule Libraries - chemical synthesis ; Small Molecule Libraries - chemistry ; Small Molecule Libraries - pharmacology ; Stat3 protein ; STAT3 Transcription Factor - antagonists &amp; inhibitors ; STAT3 Transcription Factor - chemistry ; STAT3 Transcription Factor - genetics ; STAT3 Transcription Factor - metabolism ; Stem cells ; Sulfonamides - chemical synthesis ; Sulfonamides - chemistry ; Sulfonamides - pharmacology ; Therapy ; Thiazoles - pharmacology ; Transcription ; Tyrosine</subject><ispartof>Leukemia, 2015-03, Vol.29 (3), p.586-597</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2015</rights><rights>Macmillan Publishers Limited 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c710t-d89e8fcce0e67fba1e51cc5ae30c759ee30ddc962044e4798ce4b03e234e31d03</citedby><cites>FETCH-LOGICAL-c710t-d89e8fcce0e67fba1e51cc5ae30c759ee30ddc962044e4798ce4b03e234e31d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/leu.2014.245$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/leu.2014.245$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25134459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eiring, A M</creatorcontrib><creatorcontrib>Page, B D G</creatorcontrib><creatorcontrib>Kraft, I L</creatorcontrib><creatorcontrib>Mason, C C</creatorcontrib><creatorcontrib>Vellore, N A</creatorcontrib><creatorcontrib>Resetca, D</creatorcontrib><creatorcontrib>Zabriskie, M S</creatorcontrib><creatorcontrib>Zhang, T Y</creatorcontrib><creatorcontrib>Khorashad, J S</creatorcontrib><creatorcontrib>Engar, A J</creatorcontrib><creatorcontrib>Reynolds, K R</creatorcontrib><creatorcontrib>Anderson, D J</creatorcontrib><creatorcontrib>Senina, A</creatorcontrib><creatorcontrib>Pomicter, A D</creatorcontrib><creatorcontrib>Arpin, C C</creatorcontrib><creatorcontrib>Ahmad, S</creatorcontrib><creatorcontrib>Heaton, W L</creatorcontrib><creatorcontrib>Tantravahi, S K</creatorcontrib><creatorcontrib>Todic, A</creatorcontrib><creatorcontrib>Colaguori, R</creatorcontrib><creatorcontrib>Moriggl, R</creatorcontrib><creatorcontrib>Wilson, D J</creatorcontrib><creatorcontrib>Baron, R</creatorcontrib><creatorcontrib>O'Hare, T</creatorcontrib><creatorcontrib>Gunning, P T</creatorcontrib><creatorcontrib>Deininger, M W</creatorcontrib><title>Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy despite continued suppression of BCR-ABL1 kinase activity, a situation termed BCR-ABL1 kinase-independent TKI resistance. Here, we identified activation of signal transducer and activator of transcription 3 (STAT3) by extrinsic or intrinsic mechanisms as an essential feature of BCR-ABL1 kinase-independent TKI resistance. By combining synthetic chemistry, in vitro reporter assays, and molecular dynamics-guided rational inhibitor design and high-throughput screening, we discovered BP-5-087, a potent and selective STAT3 SH2 domain inhibitor that reduces STAT3 phosphorylation and nuclear transactivation. Computational simulations, fluorescence polarization assays and hydrogen–deuterium exchange assays establish direct engagement of STAT3 by BP-5-087 and provide a high-resolution view of the STAT3 SH2 domain/BP-5-087 interface. In primary cells from chronic myeloid leukemia (CML) patients with BCR-ABL1 kinase-independent TKI resistance, BP-5-087 (1.0 μ M ) restored TKI sensitivity to therapy-resistant CML progenitor cells, including leukemic stem cells. Our findings implicate STAT3 as a critical signaling node in BCR-ABL1 kinase-independent TKI resistance, and suggest that BP-5-087 has clinical utility for treating malignancies characterized by STAT3 activation.</description><subject>13/100</subject><subject>13/95</subject><subject>14/63</subject><subject>38/77</subject><subject>38/90</subject><subject>42/41</subject><subject>45/47</subject><subject>631/154/309</subject><subject>631/67/1990/283/1896</subject><subject>692/699/67/1059/2326</subject><subject>82/58</subject><subject>Activation</subject><subject>Aminosalicylic Acids - chemical synthesis</subject><subject>Aminosalicylic Acids - chemistry</subject><subject>Aminosalicylic Acids - pharmacology</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Assaying</subject><subject>BCR-ABL protein</subject><subject>Benzamides - pharmacology</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Care and treatment</subject><subject>Cell Line, Tumor</subject><subject>Chemistry</subject><subject>Chromosomes</subject><subject>Chronic myeloid leukemia</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Critical Care Medicine</subject><subject>Cytokines</subject><subject>Dasatinib</subject><subject>Deuterium</subject><subject>Development and progression</subject><subject>Drug Discovery</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug therapy</subject><subject>Enzyme inhibitors</subject><subject>Enzymes</subject><subject>Fluorescence</subject><subject>Fluorescence polarization</subject><subject>Fusion Proteins, bcr-abl - antagonists &amp; inhibitors</subject><subject>Fusion Proteins, bcr-abl - genetics</subject><subject>Fusion Proteins, bcr-abl - metabolism</subject><subject>Gene Expression Regulation, Leukemic</subject><subject>Gene mutations</subject><subject>Genes, Reporter</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Hematology</subject><subject>High-throughput screening</subject><subject>Humans</subject><subject>Imatinib Mesylate</subject><subject>Inhibitors</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Lethality</subject><subject>Leukemia</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</subject><subject>Leukocytes, Mononuclear - drug effects</subject><subject>Leukocytes, Mononuclear - metabolism</subject><subject>Leukocytes, Mononuclear - pathology</subject><subject>Luciferases - genetics</subject><subject>Luciferases - metabolism</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Mutation</subject><subject>Myeloid leukemia</subject><subject>Neoplastic Stem Cells - drug effects</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Oncology</subject><subject>Organic chemistry</subject><subject>original-article</subject><subject>Patient outcomes</subject><subject>Patients</subject><subject>Philadelphia chromosome</subject><subject>Phosphorylation</subject><subject>Piperazines - pharmacology</subject><subject>Progenitor cells</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Structure, Tertiary</subject><subject>Protein-tyrosine kinase</subject><subject>Pyrimidines - pharmacology</subject><subject>Regulation</subject><subject>Regulatory approval</subject><subject>Signal Transduction</subject><subject>Small Molecule Libraries - chemical synthesis</subject><subject>Small Molecule Libraries - chemistry</subject><subject>Small Molecule Libraries - pharmacology</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - antagonists &amp; inhibitors</subject><subject>STAT3 Transcription Factor - chemistry</subject><subject>STAT3 Transcription Factor - genetics</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Stem cells</subject><subject>Sulfonamides - chemical synthesis</subject><subject>Sulfonamides - chemistry</subject><subject>Sulfonamides - pharmacology</subject><subject>Therapy</subject><subject>Thiazoles - pharmacology</subject><subject>Transcription</subject><subject>Tyrosine</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkt-L1DAQx4so3rr65rMUBPHBrknzo-2L0Fv8BQuCrs8hm063OdNkTVJh_3tT9jz35FDJw4SZT75DZr5Z9hSjFUakfm1gWpUI01VJ2b1sgWnFC8YYvp8tUF1XBW9KepE9CuEKobnIH2YXJcOEUtYsssPajTttocu_bNstyaXt8sv156K93OBc20HvdNTOpms3KQh5ONo4QNQqNxAHaXQ8plqecl4ejoWHoEOUNuZq8M4mbDyCcbpL-PQNRi0fZw96aQI8uY7L7Ou7t9v1h2Lz6f3HdbspVIVRLLq6gbpXChDwqt9JDAwrxSQQpCrWQIpdpxpeIkqBVk2tgO4QgZJQILhDZJm9Oekept0InQIbvTTi4PUo_VE4qcXtitWD2LsfghJCK1YngZfXAt59nyBEMeqgwBhpwU1BYF5xwjip-X-gHJOywmRGn_-BXrnJ2zQJURKCOcEVQn-jkhaiTV1i-pvaSwNC296lj6i5tWgpYpg3deq7zFZ3UOl0aR3KWeh1yt968OLswQDSxCE4M80-CKLlGJXJd4T-CzxXfHUClXcheOhv1oCRmE0skjvEbGKRTJzwZ-eru4F_uTYBxQkIqWT34M_Gc5fgT9iE-PY</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Eiring, A M</creator><creator>Page, B D G</creator><creator>Kraft, I L</creator><creator>Mason, C C</creator><creator>Vellore, N A</creator><creator>Resetca, D</creator><creator>Zabriskie, M S</creator><creator>Zhang, T Y</creator><creator>Khorashad, J S</creator><creator>Engar, A J</creator><creator>Reynolds, K R</creator><creator>Anderson, D J</creator><creator>Senina, A</creator><creator>Pomicter, A D</creator><creator>Arpin, C C</creator><creator>Ahmad, S</creator><creator>Heaton, W L</creator><creator>Tantravahi, S K</creator><creator>Todic, A</creator><creator>Colaguori, R</creator><creator>Moriggl, R</creator><creator>Wilson, D J</creator><creator>Baron, R</creator><creator>O'Hare, T</creator><creator>Gunning, P T</creator><creator>Deininger, M W</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150301</creationdate><title>Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia</title><author>Eiring, A M ; Page, B D G ; Kraft, I L ; Mason, C C ; Vellore, N A ; Resetca, D ; Zabriskie, M S ; Zhang, T Y ; Khorashad, J S ; Engar, A J ; Reynolds, K R ; Anderson, D J ; Senina, A ; Pomicter, A D ; Arpin, C C ; Ahmad, S ; Heaton, W L ; Tantravahi, S K ; Todic, A ; Colaguori, R ; Moriggl, R ; Wilson, D J ; Baron, R ; O'Hare, T ; Gunning, P T ; Deininger, M W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c710t-d89e8fcce0e67fba1e51cc5ae30c759ee30ddc962044e4798ce4b03e234e31d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/100</topic><topic>13/95</topic><topic>14/63</topic><topic>38/77</topic><topic>38/90</topic><topic>42/41</topic><topic>45/47</topic><topic>631/154/309</topic><topic>631/67/1990/283/1896</topic><topic>692/699/67/1059/2326</topic><topic>82/58</topic><topic>Activation</topic><topic>Aminosalicylic Acids - chemical synthesis</topic><topic>Aminosalicylic Acids - chemistry</topic><topic>Aminosalicylic Acids - pharmacology</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Assaying</topic><topic>BCR-ABL protein</topic><topic>Benzamides - pharmacology</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Care and treatment</topic><topic>Cell Line, Tumor</topic><topic>Chemistry</topic><topic>Chromosomes</topic><topic>Chronic myeloid leukemia</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Critical Care Medicine</topic><topic>Cytokines</topic><topic>Dasatinib</topic><topic>Deuterium</topic><topic>Development and progression</topic><topic>Drug Discovery</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug therapy</topic><topic>Enzyme inhibitors</topic><topic>Enzymes</topic><topic>Fluorescence</topic><topic>Fluorescence polarization</topic><topic>Fusion Proteins, bcr-abl - antagonists &amp; inhibitors</topic><topic>Fusion Proteins, bcr-abl - genetics</topic><topic>Fusion Proteins, bcr-abl - metabolism</topic><topic>Gene Expression Regulation, Leukemic</topic><topic>Gene mutations</topic><topic>Genes, Reporter</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Hematology</topic><topic>High-throughput screening</topic><topic>Humans</topic><topic>Imatinib Mesylate</topic><topic>Inhibitors</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Lethality</topic><topic>Leukemia</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</topic><topic>Leukocytes, Mononuclear - drug effects</topic><topic>Leukocytes, Mononuclear - metabolism</topic><topic>Leukocytes, Mononuclear - pathology</topic><topic>Luciferases - genetics</topic><topic>Luciferases - metabolism</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Mutation</topic><topic>Myeloid leukemia</topic><topic>Neoplastic Stem Cells - drug effects</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Oncology</topic><topic>Organic chemistry</topic><topic>original-article</topic><topic>Patient outcomes</topic><topic>Patients</topic><topic>Philadelphia chromosome</topic><topic>Phosphorylation</topic><topic>Piperazines - pharmacology</topic><topic>Progenitor cells</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Structure, Tertiary</topic><topic>Protein-tyrosine kinase</topic><topic>Pyrimidines - pharmacology</topic><topic>Regulation</topic><topic>Regulatory approval</topic><topic>Signal Transduction</topic><topic>Small Molecule Libraries - chemical synthesis</topic><topic>Small Molecule Libraries - chemistry</topic><topic>Small Molecule Libraries - pharmacology</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - antagonists &amp; inhibitors</topic><topic>STAT3 Transcription Factor - chemistry</topic><topic>STAT3 Transcription Factor - genetics</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Stem cells</topic><topic>Sulfonamides - chemical synthesis</topic><topic>Sulfonamides - chemistry</topic><topic>Sulfonamides - pharmacology</topic><topic>Therapy</topic><topic>Thiazoles - pharmacology</topic><topic>Transcription</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eiring, A M</creatorcontrib><creatorcontrib>Page, B D G</creatorcontrib><creatorcontrib>Kraft, I L</creatorcontrib><creatorcontrib>Mason, C C</creatorcontrib><creatorcontrib>Vellore, N A</creatorcontrib><creatorcontrib>Resetca, D</creatorcontrib><creatorcontrib>Zabriskie, M S</creatorcontrib><creatorcontrib>Zhang, T Y</creatorcontrib><creatorcontrib>Khorashad, J S</creatorcontrib><creatorcontrib>Engar, A J</creatorcontrib><creatorcontrib>Reynolds, K R</creatorcontrib><creatorcontrib>Anderson, D J</creatorcontrib><creatorcontrib>Senina, A</creatorcontrib><creatorcontrib>Pomicter, A D</creatorcontrib><creatorcontrib>Arpin, C C</creatorcontrib><creatorcontrib>Ahmad, S</creatorcontrib><creatorcontrib>Heaton, W L</creatorcontrib><creatorcontrib>Tantravahi, S K</creatorcontrib><creatorcontrib>Todic, A</creatorcontrib><creatorcontrib>Colaguori, R</creatorcontrib><creatorcontrib>Moriggl, R</creatorcontrib><creatorcontrib>Wilson, D J</creatorcontrib><creatorcontrib>Baron, R</creatorcontrib><creatorcontrib>O'Hare, T</creatorcontrib><creatorcontrib>Gunning, P T</creatorcontrib><creatorcontrib>Deininger, M W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eiring, A M</au><au>Page, B D G</au><au>Kraft, I L</au><au>Mason, C C</au><au>Vellore, N A</au><au>Resetca, D</au><au>Zabriskie, M S</au><au>Zhang, T Y</au><au>Khorashad, J S</au><au>Engar, A J</au><au>Reynolds, K R</au><au>Anderson, D J</au><au>Senina, A</au><au>Pomicter, A D</au><au>Arpin, C C</au><au>Ahmad, S</au><au>Heaton, W L</au><au>Tantravahi, S K</au><au>Todic, A</au><au>Colaguori, R</au><au>Moriggl, R</au><au>Wilson, D J</au><au>Baron, R</au><au>O'Hare, T</au><au>Gunning, P T</au><au>Deininger, M W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>29</volume><issue>3</issue><spage>586</spage><epage>597</epage><pages>586-597</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy despite continued suppression of BCR-ABL1 kinase activity, a situation termed BCR-ABL1 kinase-independent TKI resistance. Here, we identified activation of signal transducer and activator of transcription 3 (STAT3) by extrinsic or intrinsic mechanisms as an essential feature of BCR-ABL1 kinase-independent TKI resistance. By combining synthetic chemistry, in vitro reporter assays, and molecular dynamics-guided rational inhibitor design and high-throughput screening, we discovered BP-5-087, a potent and selective STAT3 SH2 domain inhibitor that reduces STAT3 phosphorylation and nuclear transactivation. Computational simulations, fluorescence polarization assays and hydrogen–deuterium exchange assays establish direct engagement of STAT3 by BP-5-087 and provide a high-resolution view of the STAT3 SH2 domain/BP-5-087 interface. In primary cells from chronic myeloid leukemia (CML) patients with BCR-ABL1 kinase-independent TKI resistance, BP-5-087 (1.0 μ M ) restored TKI sensitivity to therapy-resistant CML progenitor cells, including leukemic stem cells. Our findings implicate STAT3 as a critical signaling node in BCR-ABL1 kinase-independent TKI resistance, and suggest that BP-5-087 has clinical utility for treating malignancies characterized by STAT3 activation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25134459</pmid><doi>10.1038/leu.2014.245</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-6924
ispartof Leukemia, 2015-03, Vol.29 (3), p.586-597
issn 0887-6924
1476-5551
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4334758
source MEDLINE; Nature; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings
subjects 13/100
13/95
14/63
38/77
38/90
42/41
45/47
631/154/309
631/67/1990/283/1896
692/699/67/1059/2326
82/58
Activation
Aminosalicylic Acids - chemical synthesis
Aminosalicylic Acids - chemistry
Aminosalicylic Acids - pharmacology
Antineoplastic Agents - pharmacology
Apoptosis - drug effects
Assaying
BCR-ABL protein
Benzamides - pharmacology
Cancer
Cancer Research
Care and treatment
Cell Line, Tumor
Chemistry
Chromosomes
Chronic myeloid leukemia
Computer applications
Computer simulation
Critical Care Medicine
Cytokines
Dasatinib
Deuterium
Development and progression
Drug Discovery
Drug resistance
Drug Resistance, Neoplasm - drug effects
Drug therapy
Enzyme inhibitors
Enzymes
Fluorescence
Fluorescence polarization
Fusion Proteins, bcr-abl - antagonists & inhibitors
Fusion Proteins, bcr-abl - genetics
Fusion Proteins, bcr-abl - metabolism
Gene Expression Regulation, Leukemic
Gene mutations
Genes, Reporter
Genetic aspects
Health aspects
Hematology
High-throughput screening
Humans
Imatinib Mesylate
Inhibitors
Intensive
Internal Medicine
Kinases
Lethality
Leukemia
Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy
Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics
Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism
Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology
Leukocytes, Mononuclear - drug effects
Leukocytes, Mononuclear - metabolism
Leukocytes, Mononuclear - pathology
Luciferases - genetics
Luciferases - metabolism
Medical research
Medicine
Medicine & Public Health
Molecular Docking Simulation
Molecular dynamics
Mutation
Myeloid leukemia
Neoplastic Stem Cells - drug effects
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Oncology
Organic chemistry
original-article
Patient outcomes
Patients
Philadelphia chromosome
Phosphorylation
Piperazines - pharmacology
Progenitor cells
Protein Kinase Inhibitors - pharmacology
Protein Structure, Tertiary
Protein-tyrosine kinase
Pyrimidines - pharmacology
Regulation
Regulatory approval
Signal Transduction
Small Molecule Libraries - chemical synthesis
Small Molecule Libraries - chemistry
Small Molecule Libraries - pharmacology
Stat3 protein
STAT3 Transcription Factor - antagonists & inhibitors
STAT3 Transcription Factor - chemistry
STAT3 Transcription Factor - genetics
STAT3 Transcription Factor - metabolism
Stem cells
Sulfonamides - chemical synthesis
Sulfonamides - chemistry
Sulfonamides - pharmacology
Therapy
Thiazoles - pharmacology
Transcription
Tyrosine
title Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20STAT3%20and%20BCR-ABL1%20inhibition%20induces%20synthetic%20lethality%20in%20therapy-resistant%20chronic%20myeloid%20leukemia&rft.jtitle=Leukemia&rft.au=Eiring,%20A%20M&rft.date=2015-03-01&rft.volume=29&rft.issue=3&rft.spage=586&rft.epage=597&rft.pages=586-597&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/leu.2014.245&rft_dat=%3Cgale_pubme%3EA610203834%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660498214&rft_id=info:pmid/25134459&rft_galeid=A610203834&rfr_iscdi=true