Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia
Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy despite conti...
Gespeichert in:
Veröffentlicht in: | Leukemia 2015-03, Vol.29 (3), p.586-597 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 597 |
---|---|
container_issue | 3 |
container_start_page | 586 |
container_title | Leukemia |
container_volume | 29 |
creator | Eiring, A M Page, B D G Kraft, I L Mason, C C Vellore, N A Resetca, D Zabriskie, M S Zhang, T Y Khorashad, J S Engar, A J Reynolds, K R Anderson, D J Senina, A Pomicter, A D Arpin, C C Ahmad, S Heaton, W L Tantravahi, S K Todic, A Colaguori, R Moriggl, R Wilson, D J Baron, R O'Hare, T Gunning, P T Deininger, M W |
description | Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy despite continued suppression of BCR-ABL1 kinase activity, a situation termed BCR-ABL1 kinase-independent TKI resistance. Here, we identified activation of signal transducer and activator of transcription 3 (STAT3) by extrinsic or intrinsic mechanisms as an essential feature of BCR-ABL1 kinase-independent TKI resistance. By combining synthetic chemistry,
in vitro
reporter assays, and molecular dynamics-guided rational inhibitor design and high-throughput screening, we discovered BP-5-087, a potent and selective STAT3 SH2 domain inhibitor that reduces STAT3 phosphorylation and nuclear transactivation. Computational simulations, fluorescence polarization assays and hydrogen–deuterium exchange assays establish direct engagement of STAT3 by BP-5-087 and provide a high-resolution view of the STAT3 SH2 domain/BP-5-087 interface. In primary cells from chronic myeloid leukemia (CML) patients with BCR-ABL1 kinase-independent TKI resistance, BP-5-087 (1.0 μ
M
) restored TKI sensitivity to therapy-resistant CML progenitor cells, including leukemic stem cells. Our findings implicate STAT3 as a critical signaling node in BCR-ABL1 kinase-independent TKI resistance, and suggest that BP-5-087 has clinical utility for treating malignancies characterized by STAT3 activation. |
doi_str_mv | 10.1038/leu.2014.245 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4334758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A610203834</galeid><sourcerecordid>A610203834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c710t-d89e8fcce0e67fba1e51cc5ae30c759ee30ddc962044e4798ce4b03e234e31d03</originalsourceid><addsrcrecordid>eNqNkt-L1DAQx4so3rr65rMUBPHBrknzo-2L0Fv8BQuCrs8hm063OdNkTVJh_3tT9jz35FDJw4SZT75DZr5Z9hSjFUakfm1gWpUI01VJ2b1sgWnFC8YYvp8tUF1XBW9KepE9CuEKobnIH2YXJcOEUtYsssPajTttocu_bNstyaXt8sv156K93OBc20HvdNTOpms3KQh5ONo4QNQqNxAHaXQ8plqecl4ejoWHoEOUNuZq8M4mbDyCcbpL-PQNRi0fZw96aQI8uY7L7Ou7t9v1h2Lz6f3HdbspVIVRLLq6gbpXChDwqt9JDAwrxSQQpCrWQIpdpxpeIkqBVk2tgO4QgZJQILhDZJm9Oekept0InQIbvTTi4PUo_VE4qcXtitWD2LsfghJCK1YngZfXAt59nyBEMeqgwBhpwU1BYF5xwjip-X-gHJOywmRGn_-BXrnJ2zQJURKCOcEVQn-jkhaiTV1i-pvaSwNC296lj6i5tWgpYpg3deq7zFZ3UOl0aR3KWeh1yt968OLswQDSxCE4M80-CKLlGJXJd4T-CzxXfHUClXcheOhv1oCRmE0skjvEbGKRTJzwZ-eru4F_uTYBxQkIqWT34M_Gc5fgT9iE-PY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660498214</pqid></control><display><type>article</type><title>Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia</title><source>MEDLINE</source><source>Nature</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Eiring, A M ; Page, B D G ; Kraft, I L ; Mason, C C ; Vellore, N A ; Resetca, D ; Zabriskie, M S ; Zhang, T Y ; Khorashad, J S ; Engar, A J ; Reynolds, K R ; Anderson, D J ; Senina, A ; Pomicter, A D ; Arpin, C C ; Ahmad, S ; Heaton, W L ; Tantravahi, S K ; Todic, A ; Colaguori, R ; Moriggl, R ; Wilson, D J ; Baron, R ; O'Hare, T ; Gunning, P T ; Deininger, M W</creator><creatorcontrib>Eiring, A M ; Page, B D G ; Kraft, I L ; Mason, C C ; Vellore, N A ; Resetca, D ; Zabriskie, M S ; Zhang, T Y ; Khorashad, J S ; Engar, A J ; Reynolds, K R ; Anderson, D J ; Senina, A ; Pomicter, A D ; Arpin, C C ; Ahmad, S ; Heaton, W L ; Tantravahi, S K ; Todic, A ; Colaguori, R ; Moriggl, R ; Wilson, D J ; Baron, R ; O'Hare, T ; Gunning, P T ; Deininger, M W</creatorcontrib><description>Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy despite continued suppression of BCR-ABL1 kinase activity, a situation termed BCR-ABL1 kinase-independent TKI resistance. Here, we identified activation of signal transducer and activator of transcription 3 (STAT3) by extrinsic or intrinsic mechanisms as an essential feature of BCR-ABL1 kinase-independent TKI resistance. By combining synthetic chemistry,
in vitro
reporter assays, and molecular dynamics-guided rational inhibitor design and high-throughput screening, we discovered BP-5-087, a potent and selective STAT3 SH2 domain inhibitor that reduces STAT3 phosphorylation and nuclear transactivation. Computational simulations, fluorescence polarization assays and hydrogen–deuterium exchange assays establish direct engagement of STAT3 by BP-5-087 and provide a high-resolution view of the STAT3 SH2 domain/BP-5-087 interface. In primary cells from chronic myeloid leukemia (CML) patients with BCR-ABL1 kinase-independent TKI resistance, BP-5-087 (1.0 μ
M
) restored TKI sensitivity to therapy-resistant CML progenitor cells, including leukemic stem cells. Our findings implicate STAT3 as a critical signaling node in BCR-ABL1 kinase-independent TKI resistance, and suggest that BP-5-087 has clinical utility for treating malignancies characterized by STAT3 activation.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/leu.2014.245</identifier><identifier>PMID: 25134459</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/95 ; 14/63 ; 38/77 ; 38/90 ; 42/41 ; 45/47 ; 631/154/309 ; 631/67/1990/283/1896 ; 692/699/67/1059/2326 ; 82/58 ; Activation ; Aminosalicylic Acids - chemical synthesis ; Aminosalicylic Acids - chemistry ; Aminosalicylic Acids - pharmacology ; Antineoplastic Agents - pharmacology ; Apoptosis - drug effects ; Assaying ; BCR-ABL protein ; Benzamides - pharmacology ; Cancer ; Cancer Research ; Care and treatment ; Cell Line, Tumor ; Chemistry ; Chromosomes ; Chronic myeloid leukemia ; Computer applications ; Computer simulation ; Critical Care Medicine ; Cytokines ; Dasatinib ; Deuterium ; Development and progression ; Drug Discovery ; Drug resistance ; Drug Resistance, Neoplasm - drug effects ; Drug therapy ; Enzyme inhibitors ; Enzymes ; Fluorescence ; Fluorescence polarization ; Fusion Proteins, bcr-abl - antagonists & inhibitors ; Fusion Proteins, bcr-abl - genetics ; Fusion Proteins, bcr-abl - metabolism ; Gene Expression Regulation, Leukemic ; Gene mutations ; Genes, Reporter ; Genetic aspects ; Health aspects ; Hematology ; High-throughput screening ; Humans ; Imatinib Mesylate ; Inhibitors ; Intensive ; Internal Medicine ; Kinases ; Lethality ; Leukemia ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology ; Leukocytes, Mononuclear - drug effects ; Leukocytes, Mononuclear - metabolism ; Leukocytes, Mononuclear - pathology ; Luciferases - genetics ; Luciferases - metabolism ; Medical research ; Medicine ; Medicine & Public Health ; Molecular Docking Simulation ; Molecular dynamics ; Mutation ; Myeloid leukemia ; Neoplastic Stem Cells - drug effects ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; Oncology ; Organic chemistry ; original-article ; Patient outcomes ; Patients ; Philadelphia chromosome ; Phosphorylation ; Piperazines - pharmacology ; Progenitor cells ; Protein Kinase Inhibitors - pharmacology ; Protein Structure, Tertiary ; Protein-tyrosine kinase ; Pyrimidines - pharmacology ; Regulation ; Regulatory approval ; Signal Transduction ; Small Molecule Libraries - chemical synthesis ; Small Molecule Libraries - chemistry ; Small Molecule Libraries - pharmacology ; Stat3 protein ; STAT3 Transcription Factor - antagonists & inhibitors ; STAT3 Transcription Factor - chemistry ; STAT3 Transcription Factor - genetics ; STAT3 Transcription Factor - metabolism ; Stem cells ; Sulfonamides - chemical synthesis ; Sulfonamides - chemistry ; Sulfonamides - pharmacology ; Therapy ; Thiazoles - pharmacology ; Transcription ; Tyrosine</subject><ispartof>Leukemia, 2015-03, Vol.29 (3), p.586-597</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2015</rights><rights>Macmillan Publishers Limited 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c710t-d89e8fcce0e67fba1e51cc5ae30c759ee30ddc962044e4798ce4b03e234e31d03</citedby><cites>FETCH-LOGICAL-c710t-d89e8fcce0e67fba1e51cc5ae30c759ee30ddc962044e4798ce4b03e234e31d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/leu.2014.245$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/leu.2014.245$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25134459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eiring, A M</creatorcontrib><creatorcontrib>Page, B D G</creatorcontrib><creatorcontrib>Kraft, I L</creatorcontrib><creatorcontrib>Mason, C C</creatorcontrib><creatorcontrib>Vellore, N A</creatorcontrib><creatorcontrib>Resetca, D</creatorcontrib><creatorcontrib>Zabriskie, M S</creatorcontrib><creatorcontrib>Zhang, T Y</creatorcontrib><creatorcontrib>Khorashad, J S</creatorcontrib><creatorcontrib>Engar, A J</creatorcontrib><creatorcontrib>Reynolds, K R</creatorcontrib><creatorcontrib>Anderson, D J</creatorcontrib><creatorcontrib>Senina, A</creatorcontrib><creatorcontrib>Pomicter, A D</creatorcontrib><creatorcontrib>Arpin, C C</creatorcontrib><creatorcontrib>Ahmad, S</creatorcontrib><creatorcontrib>Heaton, W L</creatorcontrib><creatorcontrib>Tantravahi, S K</creatorcontrib><creatorcontrib>Todic, A</creatorcontrib><creatorcontrib>Colaguori, R</creatorcontrib><creatorcontrib>Moriggl, R</creatorcontrib><creatorcontrib>Wilson, D J</creatorcontrib><creatorcontrib>Baron, R</creatorcontrib><creatorcontrib>O'Hare, T</creatorcontrib><creatorcontrib>Gunning, P T</creatorcontrib><creatorcontrib>Deininger, M W</creatorcontrib><title>Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy despite continued suppression of BCR-ABL1 kinase activity, a situation termed BCR-ABL1 kinase-independent TKI resistance. Here, we identified activation of signal transducer and activator of transcription 3 (STAT3) by extrinsic or intrinsic mechanisms as an essential feature of BCR-ABL1 kinase-independent TKI resistance. By combining synthetic chemistry,
in vitro
reporter assays, and molecular dynamics-guided rational inhibitor design and high-throughput screening, we discovered BP-5-087, a potent and selective STAT3 SH2 domain inhibitor that reduces STAT3 phosphorylation and nuclear transactivation. Computational simulations, fluorescence polarization assays and hydrogen–deuterium exchange assays establish direct engagement of STAT3 by BP-5-087 and provide a high-resolution view of the STAT3 SH2 domain/BP-5-087 interface. In primary cells from chronic myeloid leukemia (CML) patients with BCR-ABL1 kinase-independent TKI resistance, BP-5-087 (1.0 μ
M
) restored TKI sensitivity to therapy-resistant CML progenitor cells, including leukemic stem cells. Our findings implicate STAT3 as a critical signaling node in BCR-ABL1 kinase-independent TKI resistance, and suggest that BP-5-087 has clinical utility for treating malignancies characterized by STAT3 activation.</description><subject>13/100</subject><subject>13/95</subject><subject>14/63</subject><subject>38/77</subject><subject>38/90</subject><subject>42/41</subject><subject>45/47</subject><subject>631/154/309</subject><subject>631/67/1990/283/1896</subject><subject>692/699/67/1059/2326</subject><subject>82/58</subject><subject>Activation</subject><subject>Aminosalicylic Acids - chemical synthesis</subject><subject>Aminosalicylic Acids - chemistry</subject><subject>Aminosalicylic Acids - pharmacology</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Assaying</subject><subject>BCR-ABL protein</subject><subject>Benzamides - pharmacology</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Care and treatment</subject><subject>Cell Line, Tumor</subject><subject>Chemistry</subject><subject>Chromosomes</subject><subject>Chronic myeloid leukemia</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Critical Care Medicine</subject><subject>Cytokines</subject><subject>Dasatinib</subject><subject>Deuterium</subject><subject>Development and progression</subject><subject>Drug Discovery</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug therapy</subject><subject>Enzyme inhibitors</subject><subject>Enzymes</subject><subject>Fluorescence</subject><subject>Fluorescence polarization</subject><subject>Fusion Proteins, bcr-abl - antagonists & inhibitors</subject><subject>Fusion Proteins, bcr-abl - genetics</subject><subject>Fusion Proteins, bcr-abl - metabolism</subject><subject>Gene Expression Regulation, Leukemic</subject><subject>Gene mutations</subject><subject>Genes, Reporter</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Hematology</subject><subject>High-throughput screening</subject><subject>Humans</subject><subject>Imatinib Mesylate</subject><subject>Inhibitors</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Lethality</subject><subject>Leukemia</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</subject><subject>Leukocytes, Mononuclear - drug effects</subject><subject>Leukocytes, Mononuclear - metabolism</subject><subject>Leukocytes, Mononuclear - pathology</subject><subject>Luciferases - genetics</subject><subject>Luciferases - metabolism</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Mutation</subject><subject>Myeloid leukemia</subject><subject>Neoplastic Stem Cells - drug effects</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Oncology</subject><subject>Organic chemistry</subject><subject>original-article</subject><subject>Patient outcomes</subject><subject>Patients</subject><subject>Philadelphia chromosome</subject><subject>Phosphorylation</subject><subject>Piperazines - pharmacology</subject><subject>Progenitor cells</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Structure, Tertiary</subject><subject>Protein-tyrosine kinase</subject><subject>Pyrimidines - pharmacology</subject><subject>Regulation</subject><subject>Regulatory approval</subject><subject>Signal Transduction</subject><subject>Small Molecule Libraries - chemical synthesis</subject><subject>Small Molecule Libraries - chemistry</subject><subject>Small Molecule Libraries - pharmacology</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - antagonists & inhibitors</subject><subject>STAT3 Transcription Factor - chemistry</subject><subject>STAT3 Transcription Factor - genetics</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Stem cells</subject><subject>Sulfonamides - chemical synthesis</subject><subject>Sulfonamides - chemistry</subject><subject>Sulfonamides - pharmacology</subject><subject>Therapy</subject><subject>Thiazoles - pharmacology</subject><subject>Transcription</subject><subject>Tyrosine</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkt-L1DAQx4so3rr65rMUBPHBrknzo-2L0Fv8BQuCrs8hm063OdNkTVJh_3tT9jz35FDJw4SZT75DZr5Z9hSjFUakfm1gWpUI01VJ2b1sgWnFC8YYvp8tUF1XBW9KepE9CuEKobnIH2YXJcOEUtYsssPajTttocu_bNstyaXt8sv156K93OBc20HvdNTOpms3KQh5ONo4QNQqNxAHaXQ8plqecl4ejoWHoEOUNuZq8M4mbDyCcbpL-PQNRi0fZw96aQI8uY7L7Ou7t9v1h2Lz6f3HdbspVIVRLLq6gbpXChDwqt9JDAwrxSQQpCrWQIpdpxpeIkqBVk2tgO4QgZJQILhDZJm9Oekept0InQIbvTTi4PUo_VE4qcXtitWD2LsfghJCK1YngZfXAt59nyBEMeqgwBhpwU1BYF5xwjip-X-gHJOywmRGn_-BXrnJ2zQJURKCOcEVQn-jkhaiTV1i-pvaSwNC296lj6i5tWgpYpg3deq7zFZ3UOl0aR3KWeh1yt968OLswQDSxCE4M80-CKLlGJXJd4T-CzxXfHUClXcheOhv1oCRmE0skjvEbGKRTJzwZ-eru4F_uTYBxQkIqWT34M_Gc5fgT9iE-PY</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Eiring, A M</creator><creator>Page, B D G</creator><creator>Kraft, I L</creator><creator>Mason, C C</creator><creator>Vellore, N A</creator><creator>Resetca, D</creator><creator>Zabriskie, M S</creator><creator>Zhang, T Y</creator><creator>Khorashad, J S</creator><creator>Engar, A J</creator><creator>Reynolds, K R</creator><creator>Anderson, D J</creator><creator>Senina, A</creator><creator>Pomicter, A D</creator><creator>Arpin, C C</creator><creator>Ahmad, S</creator><creator>Heaton, W L</creator><creator>Tantravahi, S K</creator><creator>Todic, A</creator><creator>Colaguori, R</creator><creator>Moriggl, R</creator><creator>Wilson, D J</creator><creator>Baron, R</creator><creator>O'Hare, T</creator><creator>Gunning, P T</creator><creator>Deininger, M W</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150301</creationdate><title>Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia</title><author>Eiring, A M ; Page, B D G ; Kraft, I L ; Mason, C C ; Vellore, N A ; Resetca, D ; Zabriskie, M S ; Zhang, T Y ; Khorashad, J S ; Engar, A J ; Reynolds, K R ; Anderson, D J ; Senina, A ; Pomicter, A D ; Arpin, C C ; Ahmad, S ; Heaton, W L ; Tantravahi, S K ; Todic, A ; Colaguori, R ; Moriggl, R ; Wilson, D J ; Baron, R ; O'Hare, T ; Gunning, P T ; Deininger, M W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c710t-d89e8fcce0e67fba1e51cc5ae30c759ee30ddc962044e4798ce4b03e234e31d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/100</topic><topic>13/95</topic><topic>14/63</topic><topic>38/77</topic><topic>38/90</topic><topic>42/41</topic><topic>45/47</topic><topic>631/154/309</topic><topic>631/67/1990/283/1896</topic><topic>692/699/67/1059/2326</topic><topic>82/58</topic><topic>Activation</topic><topic>Aminosalicylic Acids - chemical synthesis</topic><topic>Aminosalicylic Acids - chemistry</topic><topic>Aminosalicylic Acids - pharmacology</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Assaying</topic><topic>BCR-ABL protein</topic><topic>Benzamides - pharmacology</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Care and treatment</topic><topic>Cell Line, Tumor</topic><topic>Chemistry</topic><topic>Chromosomes</topic><topic>Chronic myeloid leukemia</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Critical Care Medicine</topic><topic>Cytokines</topic><topic>Dasatinib</topic><topic>Deuterium</topic><topic>Development and progression</topic><topic>Drug Discovery</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug therapy</topic><topic>Enzyme inhibitors</topic><topic>Enzymes</topic><topic>Fluorescence</topic><topic>Fluorescence polarization</topic><topic>Fusion Proteins, bcr-abl - antagonists & inhibitors</topic><topic>Fusion Proteins, bcr-abl - genetics</topic><topic>Fusion Proteins, bcr-abl - metabolism</topic><topic>Gene Expression Regulation, Leukemic</topic><topic>Gene mutations</topic><topic>Genes, Reporter</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Hematology</topic><topic>High-throughput screening</topic><topic>Humans</topic><topic>Imatinib Mesylate</topic><topic>Inhibitors</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Lethality</topic><topic>Leukemia</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</topic><topic>Leukocytes, Mononuclear - drug effects</topic><topic>Leukocytes, Mononuclear - metabolism</topic><topic>Leukocytes, Mononuclear - pathology</topic><topic>Luciferases - genetics</topic><topic>Luciferases - metabolism</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Mutation</topic><topic>Myeloid leukemia</topic><topic>Neoplastic Stem Cells - drug effects</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Oncology</topic><topic>Organic chemistry</topic><topic>original-article</topic><topic>Patient outcomes</topic><topic>Patients</topic><topic>Philadelphia chromosome</topic><topic>Phosphorylation</topic><topic>Piperazines - pharmacology</topic><topic>Progenitor cells</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Structure, Tertiary</topic><topic>Protein-tyrosine kinase</topic><topic>Pyrimidines - pharmacology</topic><topic>Regulation</topic><topic>Regulatory approval</topic><topic>Signal Transduction</topic><topic>Small Molecule Libraries - chemical synthesis</topic><topic>Small Molecule Libraries - chemistry</topic><topic>Small Molecule Libraries - pharmacology</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - antagonists & inhibitors</topic><topic>STAT3 Transcription Factor - chemistry</topic><topic>STAT3 Transcription Factor - genetics</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Stem cells</topic><topic>Sulfonamides - chemical synthesis</topic><topic>Sulfonamides - chemistry</topic><topic>Sulfonamides - pharmacology</topic><topic>Therapy</topic><topic>Thiazoles - pharmacology</topic><topic>Transcription</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eiring, A M</creatorcontrib><creatorcontrib>Page, B D G</creatorcontrib><creatorcontrib>Kraft, I L</creatorcontrib><creatorcontrib>Mason, C C</creatorcontrib><creatorcontrib>Vellore, N A</creatorcontrib><creatorcontrib>Resetca, D</creatorcontrib><creatorcontrib>Zabriskie, M S</creatorcontrib><creatorcontrib>Zhang, T Y</creatorcontrib><creatorcontrib>Khorashad, J S</creatorcontrib><creatorcontrib>Engar, A J</creatorcontrib><creatorcontrib>Reynolds, K R</creatorcontrib><creatorcontrib>Anderson, D J</creatorcontrib><creatorcontrib>Senina, A</creatorcontrib><creatorcontrib>Pomicter, A D</creatorcontrib><creatorcontrib>Arpin, C C</creatorcontrib><creatorcontrib>Ahmad, S</creatorcontrib><creatorcontrib>Heaton, W L</creatorcontrib><creatorcontrib>Tantravahi, S K</creatorcontrib><creatorcontrib>Todic, A</creatorcontrib><creatorcontrib>Colaguori, R</creatorcontrib><creatorcontrib>Moriggl, R</creatorcontrib><creatorcontrib>Wilson, D J</creatorcontrib><creatorcontrib>Baron, R</creatorcontrib><creatorcontrib>O'Hare, T</creatorcontrib><creatorcontrib>Gunning, P T</creatorcontrib><creatorcontrib>Deininger, M W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing & Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eiring, A M</au><au>Page, B D G</au><au>Kraft, I L</au><au>Mason, C C</au><au>Vellore, N A</au><au>Resetca, D</au><au>Zabriskie, M S</au><au>Zhang, T Y</au><au>Khorashad, J S</au><au>Engar, A J</au><au>Reynolds, K R</au><au>Anderson, D J</au><au>Senina, A</au><au>Pomicter, A D</au><au>Arpin, C C</au><au>Ahmad, S</au><au>Heaton, W L</au><au>Tantravahi, S K</au><au>Todic, A</au><au>Colaguori, R</au><au>Moriggl, R</au><au>Wilson, D J</au><au>Baron, R</au><au>O'Hare, T</au><au>Gunning, P T</au><au>Deininger, M W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>29</volume><issue>3</issue><spage>586</spage><epage>597</epage><pages>586-597</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy despite continued suppression of BCR-ABL1 kinase activity, a situation termed BCR-ABL1 kinase-independent TKI resistance. Here, we identified activation of signal transducer and activator of transcription 3 (STAT3) by extrinsic or intrinsic mechanisms as an essential feature of BCR-ABL1 kinase-independent TKI resistance. By combining synthetic chemistry,
in vitro
reporter assays, and molecular dynamics-guided rational inhibitor design and high-throughput screening, we discovered BP-5-087, a potent and selective STAT3 SH2 domain inhibitor that reduces STAT3 phosphorylation and nuclear transactivation. Computational simulations, fluorescence polarization assays and hydrogen–deuterium exchange assays establish direct engagement of STAT3 by BP-5-087 and provide a high-resolution view of the STAT3 SH2 domain/BP-5-087 interface. In primary cells from chronic myeloid leukemia (CML) patients with BCR-ABL1 kinase-independent TKI resistance, BP-5-087 (1.0 μ
M
) restored TKI sensitivity to therapy-resistant CML progenitor cells, including leukemic stem cells. Our findings implicate STAT3 as a critical signaling node in BCR-ABL1 kinase-independent TKI resistance, and suggest that BP-5-087 has clinical utility for treating malignancies characterized by STAT3 activation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25134459</pmid><doi>10.1038/leu.2014.245</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-6924 |
ispartof | Leukemia, 2015-03, Vol.29 (3), p.586-597 |
issn | 0887-6924 1476-5551 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4334758 |
source | MEDLINE; Nature; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings |
subjects | 13/100 13/95 14/63 38/77 38/90 42/41 45/47 631/154/309 631/67/1990/283/1896 692/699/67/1059/2326 82/58 Activation Aminosalicylic Acids - chemical synthesis Aminosalicylic Acids - chemistry Aminosalicylic Acids - pharmacology Antineoplastic Agents - pharmacology Apoptosis - drug effects Assaying BCR-ABL protein Benzamides - pharmacology Cancer Cancer Research Care and treatment Cell Line, Tumor Chemistry Chromosomes Chronic myeloid leukemia Computer applications Computer simulation Critical Care Medicine Cytokines Dasatinib Deuterium Development and progression Drug Discovery Drug resistance Drug Resistance, Neoplasm - drug effects Drug therapy Enzyme inhibitors Enzymes Fluorescence Fluorescence polarization Fusion Proteins, bcr-abl - antagonists & inhibitors Fusion Proteins, bcr-abl - genetics Fusion Proteins, bcr-abl - metabolism Gene Expression Regulation, Leukemic Gene mutations Genes, Reporter Genetic aspects Health aspects Hematology High-throughput screening Humans Imatinib Mesylate Inhibitors Intensive Internal Medicine Kinases Lethality Leukemia Leukemia, Myelogenous, Chronic, BCR-ABL Positive - drug therapy Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology Leukocytes, Mononuclear - drug effects Leukocytes, Mononuclear - metabolism Leukocytes, Mononuclear - pathology Luciferases - genetics Luciferases - metabolism Medical research Medicine Medicine & Public Health Molecular Docking Simulation Molecular dynamics Mutation Myeloid leukemia Neoplastic Stem Cells - drug effects Neoplastic Stem Cells - metabolism Neoplastic Stem Cells - pathology Oncology Organic chemistry original-article Patient outcomes Patients Philadelphia chromosome Phosphorylation Piperazines - pharmacology Progenitor cells Protein Kinase Inhibitors - pharmacology Protein Structure, Tertiary Protein-tyrosine kinase Pyrimidines - pharmacology Regulation Regulatory approval Signal Transduction Small Molecule Libraries - chemical synthesis Small Molecule Libraries - chemistry Small Molecule Libraries - pharmacology Stat3 protein STAT3 Transcription Factor - antagonists & inhibitors STAT3 Transcription Factor - chemistry STAT3 Transcription Factor - genetics STAT3 Transcription Factor - metabolism Stem cells Sulfonamides - chemical synthesis Sulfonamides - chemistry Sulfonamides - pharmacology Therapy Thiazoles - pharmacology Transcription Tyrosine |
title | Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20STAT3%20and%20BCR-ABL1%20inhibition%20induces%20synthetic%20lethality%20in%20therapy-resistant%20chronic%20myeloid%20leukemia&rft.jtitle=Leukemia&rft.au=Eiring,%20A%20M&rft.date=2015-03-01&rft.volume=29&rft.issue=3&rft.spage=586&rft.epage=597&rft.pages=586-597&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/leu.2014.245&rft_dat=%3Cgale_pubme%3EA610203834%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660498214&rft_id=info:pmid/25134459&rft_galeid=A610203834&rfr_iscdi=true |