Syngap1 Haploinsufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly
Abstract Background Genetic haploinsufficiency of SYNGAP1/Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathologic developmental p...
Gespeichert in:
Veröffentlicht in: | Biological psychiatry (1969) 2015-05, Vol.77 (9), p.805-815 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 815 |
---|---|
container_issue | 9 |
container_start_page | 805 |
container_title | Biological psychiatry (1969) |
container_volume | 77 |
creator | Aceti, Massimiliano Creson, Thomas K Vaissiere, Thomas Rojas, Camilo Huang, Wen-Chin Wang, Ya-Xian Petralia, Ronald S Page, Damon T Miller, Courtney A Rumbaugh, Gavin |
description | Abstract Background Genetic haploinsufficiency of SYNGAP1/Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathologic developmental processes common among distinct brain disorders. Methods A Syngap1 haploinsufficiency model was used to explore the relationship between critical period dendritic spine abnormalities, cortical circuit assembly, and the window for genetic rescue to understand how damaging mutations disrupt key substrates of mouse brain development. Results Syngap1 mutations broadly disrupted a developmentally sensitive period that corresponded to the period of heightened postnatal cortical synaptogenesis. Pathogenic Syngap1 mutations caused a coordinated acceleration of dendrite elongation and spine morphogenesis and pruning of these structures in neonatal cortical pyramidal neurons. These mutations also prevented a form of developmental structural plasticity associated with experience-dependent reorganization of brain circuits. Consistent with these findings, Syngap1 mutant mice displayed an altered pattern of long-distance synaptic inputs into a cortical area important for cognition. Interestingly, the ability to genetically improve the behavioral endophenotype of Syngap1 mice decreased slowly over postnatal development and mapped onto the developmental period of coordinated dendritic insults. Conclusions Pathogenic Syngap1 mutations have a profound impact on the dynamics and structural integrity of pyramidal cell postsynaptic structures known to guide the de novo wiring of nascent cortical circuits. These findings support the idea that disrupted critical periods of dendritic growth and spine plasticity may be a common pathologic process in developmental brain disorders. |
doi_str_mv | 10.1016/j.biopsych.2014.08.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4326604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006322314005939</els_id><sourcerecordid>1671213130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-92ba287e750c0adb5a21184a83b3b43cccf7ab2a35b1a8e3b9853569bd274e33</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhL1Q-ctngr3xdKqotUKRFrLS9W7Yz2Xqb2MF2KuUv8Ktx2LYCLpzG1rzzztjPZNkFwTnBpPxwzJVxY5j1XU4x4Tmuc4zJi2xF6oqtKcf0ZbbCGJdrRik7y96EcEzXilLyOjujBeecFPUq-7mf7UGOBN3IsXfGhqnrjDZg9Yyu5SAPEJBEOxeilVH2aONNNDodduCNa5Hr0G72cjDtkoS-R_voJx0nn-7f5BKjcRZtjb2HFkWHNs6fHDbG68lEdBUCDKqf32avOtkHePcYz7Pbz59uNzfr7fcvXzdX27UuaBnXDVWS1hVUBdZYtqqQlJCay5oppjjTWneVVFSyQhFZA1NNXbCibFRLKw6MnWeXJ9txUgO0GmxMs4rRm0H6WThpxN8Za-7EwT0IzmhZYp4M3j8aePdjghDFYIJOT5cW3BQEKStCCSMMJ2l5kmrvQvDQPbchWCwcxVE8cRQLR4FrkTimwos_h3wuewKXBB9PAkg_9WDAi_CbGrTGg46ideb_PS7_sdC9sQuae5ghHN3kbeIgiAhUYLFftmlZJsIxLhrWsF9d7crq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671213130</pqid></control><display><type>article</type><title>Syngap1 Haploinsufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Aceti, Massimiliano ; Creson, Thomas K ; Vaissiere, Thomas ; Rojas, Camilo ; Huang, Wen-Chin ; Wang, Ya-Xian ; Petralia, Ronald S ; Page, Damon T ; Miller, Courtney A ; Rumbaugh, Gavin</creator><creatorcontrib>Aceti, Massimiliano ; Creson, Thomas K ; Vaissiere, Thomas ; Rojas, Camilo ; Huang, Wen-Chin ; Wang, Ya-Xian ; Petralia, Ronald S ; Page, Damon T ; Miller, Courtney A ; Rumbaugh, Gavin</creatorcontrib><description>Abstract Background Genetic haploinsufficiency of SYNGAP1/Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathologic developmental processes common among distinct brain disorders. Methods A Syngap1 haploinsufficiency model was used to explore the relationship between critical period dendritic spine abnormalities, cortical circuit assembly, and the window for genetic rescue to understand how damaging mutations disrupt key substrates of mouse brain development. Results Syngap1 mutations broadly disrupted a developmentally sensitive period that corresponded to the period of heightened postnatal cortical synaptogenesis. Pathogenic Syngap1 mutations caused a coordinated acceleration of dendrite elongation and spine morphogenesis and pruning of these structures in neonatal cortical pyramidal neurons. These mutations also prevented a form of developmental structural plasticity associated with experience-dependent reorganization of brain circuits. Consistent with these findings, Syngap1 mutant mice displayed an altered pattern of long-distance synaptic inputs into a cortical area important for cognition. Interestingly, the ability to genetically improve the behavioral endophenotype of Syngap1 mice decreased slowly over postnatal development and mapped onto the developmental period of coordinated dendritic insults. Conclusions Pathogenic Syngap1 mutations have a profound impact on the dynamics and structural integrity of pyramidal cell postsynaptic structures known to guide the de novo wiring of nascent cortical circuits. These findings support the idea that disrupted critical periods of dendritic growth and spine plasticity may be a common pathologic process in developmental brain disorders.</description><identifier>ISSN: 0006-3223</identifier><identifier>EISSN: 1873-2402</identifier><identifier>DOI: 10.1016/j.biopsych.2014.08.001</identifier><identifier>PMID: 25444158</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Newborn ; Autism spectrum disorder ; Cerebral Cortex - abnormalities ; Cerebral Cortex - growth & development ; Conditioning (Psychology) - physiology ; Dendritic Spines - pathology ; Dendritic Spines - physiology ; Development ; Endophenotypes ; Epilepsy ; Exploratory Behavior - physiology ; Fear - physiology ; Haploinsufficiency ; Hippocampus - abnormalities ; Hippocampus - growth & development ; Intellectual disability ; Maze Learning - physiology ; Mice, Transgenic ; Mouse model ; Neural Pathways - abnormalities ; Neural Pathways - growth & development ; Psychiatry ; Pyramidal Cells - pathology ; Pyramidal Cells - physiology ; ras GTPase-Activating Proteins - deficiency ; ras GTPase-Activating Proteins - genetics ; Sensory Deprivation - physiology ; Synapse ; Syngap1 ; Vibrissae - physiology</subject><ispartof>Biological psychiatry (1969), 2015-05, Vol.77 (9), p.805-815</ispartof><rights>Society of Biological Psychiatry</rights><rights>2015 Society of Biological Psychiatry</rights><rights>Copyright © 2015 Society of Biological Psychiatry. All rights reserved.</rights><rights>2014 by Society of Biological Psychiatry. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-92ba287e750c0adb5a21184a83b3b43cccf7ab2a35b1a8e3b9853569bd274e33</citedby><cites>FETCH-LOGICAL-c526t-92ba287e750c0adb5a21184a83b3b43cccf7ab2a35b1a8e3b9853569bd274e33</cites><orcidid>0000-0002-6632-1398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biopsych.2014.08.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25444158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aceti, Massimiliano</creatorcontrib><creatorcontrib>Creson, Thomas K</creatorcontrib><creatorcontrib>Vaissiere, Thomas</creatorcontrib><creatorcontrib>Rojas, Camilo</creatorcontrib><creatorcontrib>Huang, Wen-Chin</creatorcontrib><creatorcontrib>Wang, Ya-Xian</creatorcontrib><creatorcontrib>Petralia, Ronald S</creatorcontrib><creatorcontrib>Page, Damon T</creatorcontrib><creatorcontrib>Miller, Courtney A</creatorcontrib><creatorcontrib>Rumbaugh, Gavin</creatorcontrib><title>Syngap1 Haploinsufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly</title><title>Biological psychiatry (1969)</title><addtitle>Biol Psychiatry</addtitle><description>Abstract Background Genetic haploinsufficiency of SYNGAP1/Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathologic developmental processes common among distinct brain disorders. Methods A Syngap1 haploinsufficiency model was used to explore the relationship between critical period dendritic spine abnormalities, cortical circuit assembly, and the window for genetic rescue to understand how damaging mutations disrupt key substrates of mouse brain development. Results Syngap1 mutations broadly disrupted a developmentally sensitive period that corresponded to the period of heightened postnatal cortical synaptogenesis. Pathogenic Syngap1 mutations caused a coordinated acceleration of dendrite elongation and spine morphogenesis and pruning of these structures in neonatal cortical pyramidal neurons. These mutations also prevented a form of developmental structural plasticity associated with experience-dependent reorganization of brain circuits. Consistent with these findings, Syngap1 mutant mice displayed an altered pattern of long-distance synaptic inputs into a cortical area important for cognition. Interestingly, the ability to genetically improve the behavioral endophenotype of Syngap1 mice decreased slowly over postnatal development and mapped onto the developmental period of coordinated dendritic insults. Conclusions Pathogenic Syngap1 mutations have a profound impact on the dynamics and structural integrity of pyramidal cell postsynaptic structures known to guide the de novo wiring of nascent cortical circuits. These findings support the idea that disrupted critical periods of dendritic growth and spine plasticity may be a common pathologic process in developmental brain disorders.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Autism spectrum disorder</subject><subject>Cerebral Cortex - abnormalities</subject><subject>Cerebral Cortex - growth & development</subject><subject>Conditioning (Psychology) - physiology</subject><subject>Dendritic Spines - pathology</subject><subject>Dendritic Spines - physiology</subject><subject>Development</subject><subject>Endophenotypes</subject><subject>Epilepsy</subject><subject>Exploratory Behavior - physiology</subject><subject>Fear - physiology</subject><subject>Haploinsufficiency</subject><subject>Hippocampus - abnormalities</subject><subject>Hippocampus - growth & development</subject><subject>Intellectual disability</subject><subject>Maze Learning - physiology</subject><subject>Mice, Transgenic</subject><subject>Mouse model</subject><subject>Neural Pathways - abnormalities</subject><subject>Neural Pathways - growth & development</subject><subject>Psychiatry</subject><subject>Pyramidal Cells - pathology</subject><subject>Pyramidal Cells - physiology</subject><subject>ras GTPase-Activating Proteins - deficiency</subject><subject>ras GTPase-Activating Proteins - genetics</subject><subject>Sensory Deprivation - physiology</subject><subject>Synapse</subject><subject>Syngap1</subject><subject>Vibrissae - physiology</subject><issn>0006-3223</issn><issn>1873-2402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEokvhL1Q-ctngr3xdKqotUKRFrLS9W7Yz2Xqb2MF2KuUv8Ktx2LYCLpzG1rzzztjPZNkFwTnBpPxwzJVxY5j1XU4x4Tmuc4zJi2xF6oqtKcf0ZbbCGJdrRik7y96EcEzXilLyOjujBeecFPUq-7mf7UGOBN3IsXfGhqnrjDZg9Yyu5SAPEJBEOxeilVH2aONNNDodduCNa5Hr0G72cjDtkoS-R_voJx0nn-7f5BKjcRZtjb2HFkWHNs6fHDbG68lEdBUCDKqf32avOtkHePcYz7Pbz59uNzfr7fcvXzdX27UuaBnXDVWS1hVUBdZYtqqQlJCay5oppjjTWneVVFSyQhFZA1NNXbCibFRLKw6MnWeXJ9txUgO0GmxMs4rRm0H6WThpxN8Za-7EwT0IzmhZYp4M3j8aePdjghDFYIJOT5cW3BQEKStCCSMMJ2l5kmrvQvDQPbchWCwcxVE8cRQLR4FrkTimwos_h3wuewKXBB9PAkg_9WDAi_CbGrTGg46ideb_PS7_sdC9sQuae5ghHN3kbeIgiAhUYLFftmlZJsIxLhrWsF9d7crq</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Aceti, Massimiliano</creator><creator>Creson, Thomas K</creator><creator>Vaissiere, Thomas</creator><creator>Rojas, Camilo</creator><creator>Huang, Wen-Chin</creator><creator>Wang, Ya-Xian</creator><creator>Petralia, Ronald S</creator><creator>Page, Damon T</creator><creator>Miller, Courtney A</creator><creator>Rumbaugh, Gavin</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6632-1398</orcidid></search><sort><creationdate>20150501</creationdate><title>Syngap1 Haploinsufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly</title><author>Aceti, Massimiliano ; Creson, Thomas K ; Vaissiere, Thomas ; Rojas, Camilo ; Huang, Wen-Chin ; Wang, Ya-Xian ; Petralia, Ronald S ; Page, Damon T ; Miller, Courtney A ; Rumbaugh, Gavin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-92ba287e750c0adb5a21184a83b3b43cccf7ab2a35b1a8e3b9853569bd274e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Autism spectrum disorder</topic><topic>Cerebral Cortex - abnormalities</topic><topic>Cerebral Cortex - growth & development</topic><topic>Conditioning (Psychology) - physiology</topic><topic>Dendritic Spines - pathology</topic><topic>Dendritic Spines - physiology</topic><topic>Development</topic><topic>Endophenotypes</topic><topic>Epilepsy</topic><topic>Exploratory Behavior - physiology</topic><topic>Fear - physiology</topic><topic>Haploinsufficiency</topic><topic>Hippocampus - abnormalities</topic><topic>Hippocampus - growth & development</topic><topic>Intellectual disability</topic><topic>Maze Learning - physiology</topic><topic>Mice, Transgenic</topic><topic>Mouse model</topic><topic>Neural Pathways - abnormalities</topic><topic>Neural Pathways - growth & development</topic><topic>Psychiatry</topic><topic>Pyramidal Cells - pathology</topic><topic>Pyramidal Cells - physiology</topic><topic>ras GTPase-Activating Proteins - deficiency</topic><topic>ras GTPase-Activating Proteins - genetics</topic><topic>Sensory Deprivation - physiology</topic><topic>Synapse</topic><topic>Syngap1</topic><topic>Vibrissae - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aceti, Massimiliano</creatorcontrib><creatorcontrib>Creson, Thomas K</creatorcontrib><creatorcontrib>Vaissiere, Thomas</creatorcontrib><creatorcontrib>Rojas, Camilo</creatorcontrib><creatorcontrib>Huang, Wen-Chin</creatorcontrib><creatorcontrib>Wang, Ya-Xian</creatorcontrib><creatorcontrib>Petralia, Ronald S</creatorcontrib><creatorcontrib>Page, Damon T</creatorcontrib><creatorcontrib>Miller, Courtney A</creatorcontrib><creatorcontrib>Rumbaugh, Gavin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biological psychiatry (1969)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aceti, Massimiliano</au><au>Creson, Thomas K</au><au>Vaissiere, Thomas</au><au>Rojas, Camilo</au><au>Huang, Wen-Chin</au><au>Wang, Ya-Xian</au><au>Petralia, Ronald S</au><au>Page, Damon T</au><au>Miller, Courtney A</au><au>Rumbaugh, Gavin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syngap1 Haploinsufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly</atitle><jtitle>Biological psychiatry (1969)</jtitle><addtitle>Biol Psychiatry</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>77</volume><issue>9</issue><spage>805</spage><epage>815</epage><pages>805-815</pages><issn>0006-3223</issn><eissn>1873-2402</eissn><abstract>Abstract Background Genetic haploinsufficiency of SYNGAP1/Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathologic developmental processes common among distinct brain disorders. Methods A Syngap1 haploinsufficiency model was used to explore the relationship between critical period dendritic spine abnormalities, cortical circuit assembly, and the window for genetic rescue to understand how damaging mutations disrupt key substrates of mouse brain development. Results Syngap1 mutations broadly disrupted a developmentally sensitive period that corresponded to the period of heightened postnatal cortical synaptogenesis. Pathogenic Syngap1 mutations caused a coordinated acceleration of dendrite elongation and spine morphogenesis and pruning of these structures in neonatal cortical pyramidal neurons. These mutations also prevented a form of developmental structural plasticity associated with experience-dependent reorganization of brain circuits. Consistent with these findings, Syngap1 mutant mice displayed an altered pattern of long-distance synaptic inputs into a cortical area important for cognition. Interestingly, the ability to genetically improve the behavioral endophenotype of Syngap1 mice decreased slowly over postnatal development and mapped onto the developmental period of coordinated dendritic insults. Conclusions Pathogenic Syngap1 mutations have a profound impact on the dynamics and structural integrity of pyramidal cell postsynaptic structures known to guide the de novo wiring of nascent cortical circuits. These findings support the idea that disrupted critical periods of dendritic growth and spine plasticity may be a common pathologic process in developmental brain disorders.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25444158</pmid><doi>10.1016/j.biopsych.2014.08.001</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6632-1398</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3223 |
ispartof | Biological psychiatry (1969), 2015-05, Vol.77 (9), p.805-815 |
issn | 0006-3223 1873-2402 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4326604 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Animals, Newborn Autism spectrum disorder Cerebral Cortex - abnormalities Cerebral Cortex - growth & development Conditioning (Psychology) - physiology Dendritic Spines - pathology Dendritic Spines - physiology Development Endophenotypes Epilepsy Exploratory Behavior - physiology Fear - physiology Haploinsufficiency Hippocampus - abnormalities Hippocampus - growth & development Intellectual disability Maze Learning - physiology Mice, Transgenic Mouse model Neural Pathways - abnormalities Neural Pathways - growth & development Psychiatry Pyramidal Cells - pathology Pyramidal Cells - physiology ras GTPase-Activating Proteins - deficiency ras GTPase-Activating Proteins - genetics Sensory Deprivation - physiology Synapse Syngap1 Vibrissae - physiology |
title | Syngap1 Haploinsufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syngap1%20Haploinsufficiency%20Damages%20a%20Postnatal%20Critical%20Period%20of%20Pyramidal%20Cell%20Structural%20Maturation%20Linked%20to%20Cortical%20Circuit%20Assembly&rft.jtitle=Biological%20psychiatry%20(1969)&rft.au=Aceti,%20Massimiliano&rft.date=2015-05-01&rft.volume=77&rft.issue=9&rft.spage=805&rft.epage=815&rft.pages=805-815&rft.issn=0006-3223&rft.eissn=1873-2402&rft_id=info:doi/10.1016/j.biopsych.2014.08.001&rft_dat=%3Cproquest_pubme%3E1671213130%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671213130&rft_id=info:pmid/25444158&rft_els_id=S0006322314005939&rfr_iscdi=true |