Syngap1 Haploinsufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly

Abstract Background Genetic haploinsufficiency of SYNGAP1/Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathologic developmental p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological psychiatry (1969) 2015-05, Vol.77 (9), p.805-815
Hauptverfasser: Aceti, Massimiliano, Creson, Thomas K, Vaissiere, Thomas, Rojas, Camilo, Huang, Wen-Chin, Wang, Ya-Xian, Petralia, Ronald S, Page, Damon T, Miller, Courtney A, Rumbaugh, Gavin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 815
container_issue 9
container_start_page 805
container_title Biological psychiatry (1969)
container_volume 77
creator Aceti, Massimiliano
Creson, Thomas K
Vaissiere, Thomas
Rojas, Camilo
Huang, Wen-Chin
Wang, Ya-Xian
Petralia, Ronald S
Page, Damon T
Miller, Courtney A
Rumbaugh, Gavin
description Abstract Background Genetic haploinsufficiency of SYNGAP1/Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathologic developmental processes common among distinct brain disorders. Methods A Syngap1 haploinsufficiency model was used to explore the relationship between critical period dendritic spine abnormalities, cortical circuit assembly, and the window for genetic rescue to understand how damaging mutations disrupt key substrates of mouse brain development. Results Syngap1 mutations broadly disrupted a developmentally sensitive period that corresponded to the period of heightened postnatal cortical synaptogenesis. Pathogenic Syngap1 mutations caused a coordinated acceleration of dendrite elongation and spine morphogenesis and pruning of these structures in neonatal cortical pyramidal neurons. These mutations also prevented a form of developmental structural plasticity associated with experience-dependent reorganization of brain circuits. Consistent with these findings, Syngap1 mutant mice displayed an altered pattern of long-distance synaptic inputs into a cortical area important for cognition. Interestingly, the ability to genetically improve the behavioral endophenotype of Syngap1 mice decreased slowly over postnatal development and mapped onto the developmental period of coordinated dendritic insults. Conclusions Pathogenic Syngap1 mutations have a profound impact on the dynamics and structural integrity of pyramidal cell postsynaptic structures known to guide the de novo wiring of nascent cortical circuits. These findings support the idea that disrupted critical periods of dendritic growth and spine plasticity may be a common pathologic process in developmental brain disorders.
doi_str_mv 10.1016/j.biopsych.2014.08.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4326604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006322314005939</els_id><sourcerecordid>1671213130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-92ba287e750c0adb5a21184a83b3b43cccf7ab2a35b1a8e3b9853569bd274e33</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhL1Q-ctngr3xdKqotUKRFrLS9W7Yz2Xqb2MF2KuUv8Ktx2LYCLpzG1rzzztjPZNkFwTnBpPxwzJVxY5j1XU4x4Tmuc4zJi2xF6oqtKcf0ZbbCGJdrRik7y96EcEzXilLyOjujBeecFPUq-7mf7UGOBN3IsXfGhqnrjDZg9Yyu5SAPEJBEOxeilVH2aONNNDodduCNa5Hr0G72cjDtkoS-R_voJx0nn-7f5BKjcRZtjb2HFkWHNs6fHDbG68lEdBUCDKqf32avOtkHePcYz7Pbz59uNzfr7fcvXzdX27UuaBnXDVWS1hVUBdZYtqqQlJCay5oppjjTWneVVFSyQhFZA1NNXbCibFRLKw6MnWeXJ9txUgO0GmxMs4rRm0H6WThpxN8Za-7EwT0IzmhZYp4M3j8aePdjghDFYIJOT5cW3BQEKStCCSMMJ2l5kmrvQvDQPbchWCwcxVE8cRQLR4FrkTimwos_h3wuewKXBB9PAkg_9WDAi_CbGrTGg46ideb_PS7_sdC9sQuae5ghHN3kbeIgiAhUYLFftmlZJsIxLhrWsF9d7crq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671213130</pqid></control><display><type>article</type><title>Syngap1 Haploinsufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Aceti, Massimiliano ; Creson, Thomas K ; Vaissiere, Thomas ; Rojas, Camilo ; Huang, Wen-Chin ; Wang, Ya-Xian ; Petralia, Ronald S ; Page, Damon T ; Miller, Courtney A ; Rumbaugh, Gavin</creator><creatorcontrib>Aceti, Massimiliano ; Creson, Thomas K ; Vaissiere, Thomas ; Rojas, Camilo ; Huang, Wen-Chin ; Wang, Ya-Xian ; Petralia, Ronald S ; Page, Damon T ; Miller, Courtney A ; Rumbaugh, Gavin</creatorcontrib><description>Abstract Background Genetic haploinsufficiency of SYNGAP1/Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathologic developmental processes common among distinct brain disorders. Methods A Syngap1 haploinsufficiency model was used to explore the relationship between critical period dendritic spine abnormalities, cortical circuit assembly, and the window for genetic rescue to understand how damaging mutations disrupt key substrates of mouse brain development. Results Syngap1 mutations broadly disrupted a developmentally sensitive period that corresponded to the period of heightened postnatal cortical synaptogenesis. Pathogenic Syngap1 mutations caused a coordinated acceleration of dendrite elongation and spine morphogenesis and pruning of these structures in neonatal cortical pyramidal neurons. These mutations also prevented a form of developmental structural plasticity associated with experience-dependent reorganization of brain circuits. Consistent with these findings, Syngap1 mutant mice displayed an altered pattern of long-distance synaptic inputs into a cortical area important for cognition. Interestingly, the ability to genetically improve the behavioral endophenotype of Syngap1 mice decreased slowly over postnatal development and mapped onto the developmental period of coordinated dendritic insults. Conclusions Pathogenic Syngap1 mutations have a profound impact on the dynamics and structural integrity of pyramidal cell postsynaptic structures known to guide the de novo wiring of nascent cortical circuits. These findings support the idea that disrupted critical periods of dendritic growth and spine plasticity may be a common pathologic process in developmental brain disorders.</description><identifier>ISSN: 0006-3223</identifier><identifier>EISSN: 1873-2402</identifier><identifier>DOI: 10.1016/j.biopsych.2014.08.001</identifier><identifier>PMID: 25444158</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Newborn ; Autism spectrum disorder ; Cerebral Cortex - abnormalities ; Cerebral Cortex - growth &amp; development ; Conditioning (Psychology) - physiology ; Dendritic Spines - pathology ; Dendritic Spines - physiology ; Development ; Endophenotypes ; Epilepsy ; Exploratory Behavior - physiology ; Fear - physiology ; Haploinsufficiency ; Hippocampus - abnormalities ; Hippocampus - growth &amp; development ; Intellectual disability ; Maze Learning - physiology ; Mice, Transgenic ; Mouse model ; Neural Pathways - abnormalities ; Neural Pathways - growth &amp; development ; Psychiatry ; Pyramidal Cells - pathology ; Pyramidal Cells - physiology ; ras GTPase-Activating Proteins - deficiency ; ras GTPase-Activating Proteins - genetics ; Sensory Deprivation - physiology ; Synapse ; Syngap1 ; Vibrissae - physiology</subject><ispartof>Biological psychiatry (1969), 2015-05, Vol.77 (9), p.805-815</ispartof><rights>Society of Biological Psychiatry</rights><rights>2015 Society of Biological Psychiatry</rights><rights>Copyright © 2015 Society of Biological Psychiatry. All rights reserved.</rights><rights>2014 by Society of Biological Psychiatry. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-92ba287e750c0adb5a21184a83b3b43cccf7ab2a35b1a8e3b9853569bd274e33</citedby><cites>FETCH-LOGICAL-c526t-92ba287e750c0adb5a21184a83b3b43cccf7ab2a35b1a8e3b9853569bd274e33</cites><orcidid>0000-0002-6632-1398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biopsych.2014.08.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25444158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aceti, Massimiliano</creatorcontrib><creatorcontrib>Creson, Thomas K</creatorcontrib><creatorcontrib>Vaissiere, Thomas</creatorcontrib><creatorcontrib>Rojas, Camilo</creatorcontrib><creatorcontrib>Huang, Wen-Chin</creatorcontrib><creatorcontrib>Wang, Ya-Xian</creatorcontrib><creatorcontrib>Petralia, Ronald S</creatorcontrib><creatorcontrib>Page, Damon T</creatorcontrib><creatorcontrib>Miller, Courtney A</creatorcontrib><creatorcontrib>Rumbaugh, Gavin</creatorcontrib><title>Syngap1 Haploinsufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly</title><title>Biological psychiatry (1969)</title><addtitle>Biol Psychiatry</addtitle><description>Abstract Background Genetic haploinsufficiency of SYNGAP1/Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathologic developmental processes common among distinct brain disorders. Methods A Syngap1 haploinsufficiency model was used to explore the relationship between critical period dendritic spine abnormalities, cortical circuit assembly, and the window for genetic rescue to understand how damaging mutations disrupt key substrates of mouse brain development. Results Syngap1 mutations broadly disrupted a developmentally sensitive period that corresponded to the period of heightened postnatal cortical synaptogenesis. Pathogenic Syngap1 mutations caused a coordinated acceleration of dendrite elongation and spine morphogenesis and pruning of these structures in neonatal cortical pyramidal neurons. These mutations also prevented a form of developmental structural plasticity associated with experience-dependent reorganization of brain circuits. Consistent with these findings, Syngap1 mutant mice displayed an altered pattern of long-distance synaptic inputs into a cortical area important for cognition. Interestingly, the ability to genetically improve the behavioral endophenotype of Syngap1 mice decreased slowly over postnatal development and mapped onto the developmental period of coordinated dendritic insults. Conclusions Pathogenic Syngap1 mutations have a profound impact on the dynamics and structural integrity of pyramidal cell postsynaptic structures known to guide the de novo wiring of nascent cortical circuits. These findings support the idea that disrupted critical periods of dendritic growth and spine plasticity may be a common pathologic process in developmental brain disorders.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Autism spectrum disorder</subject><subject>Cerebral Cortex - abnormalities</subject><subject>Cerebral Cortex - growth &amp; development</subject><subject>Conditioning (Psychology) - physiology</subject><subject>Dendritic Spines - pathology</subject><subject>Dendritic Spines - physiology</subject><subject>Development</subject><subject>Endophenotypes</subject><subject>Epilepsy</subject><subject>Exploratory Behavior - physiology</subject><subject>Fear - physiology</subject><subject>Haploinsufficiency</subject><subject>Hippocampus - abnormalities</subject><subject>Hippocampus - growth &amp; development</subject><subject>Intellectual disability</subject><subject>Maze Learning - physiology</subject><subject>Mice, Transgenic</subject><subject>Mouse model</subject><subject>Neural Pathways - abnormalities</subject><subject>Neural Pathways - growth &amp; development</subject><subject>Psychiatry</subject><subject>Pyramidal Cells - pathology</subject><subject>Pyramidal Cells - physiology</subject><subject>ras GTPase-Activating Proteins - deficiency</subject><subject>ras GTPase-Activating Proteins - genetics</subject><subject>Sensory Deprivation - physiology</subject><subject>Synapse</subject><subject>Syngap1</subject><subject>Vibrissae - physiology</subject><issn>0006-3223</issn><issn>1873-2402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEokvhL1Q-ctngr3xdKqotUKRFrLS9W7Yz2Xqb2MF2KuUv8Ktx2LYCLpzG1rzzztjPZNkFwTnBpPxwzJVxY5j1XU4x4Tmuc4zJi2xF6oqtKcf0ZbbCGJdrRik7y96EcEzXilLyOjujBeecFPUq-7mf7UGOBN3IsXfGhqnrjDZg9Yyu5SAPEJBEOxeilVH2aONNNDodduCNa5Hr0G72cjDtkoS-R_voJx0nn-7f5BKjcRZtjb2HFkWHNs6fHDbG68lEdBUCDKqf32avOtkHePcYz7Pbz59uNzfr7fcvXzdX27UuaBnXDVWS1hVUBdZYtqqQlJCay5oppjjTWneVVFSyQhFZA1NNXbCibFRLKw6MnWeXJ9txUgO0GmxMs4rRm0H6WThpxN8Za-7EwT0IzmhZYp4M3j8aePdjghDFYIJOT5cW3BQEKStCCSMMJ2l5kmrvQvDQPbchWCwcxVE8cRQLR4FrkTimwos_h3wuewKXBB9PAkg_9WDAi_CbGrTGg46ideb_PS7_sdC9sQuae5ghHN3kbeIgiAhUYLFftmlZJsIxLhrWsF9d7crq</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Aceti, Massimiliano</creator><creator>Creson, Thomas K</creator><creator>Vaissiere, Thomas</creator><creator>Rojas, Camilo</creator><creator>Huang, Wen-Chin</creator><creator>Wang, Ya-Xian</creator><creator>Petralia, Ronald S</creator><creator>Page, Damon T</creator><creator>Miller, Courtney A</creator><creator>Rumbaugh, Gavin</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6632-1398</orcidid></search><sort><creationdate>20150501</creationdate><title>Syngap1 Haploinsufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly</title><author>Aceti, Massimiliano ; Creson, Thomas K ; Vaissiere, Thomas ; Rojas, Camilo ; Huang, Wen-Chin ; Wang, Ya-Xian ; Petralia, Ronald S ; Page, Damon T ; Miller, Courtney A ; Rumbaugh, Gavin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-92ba287e750c0adb5a21184a83b3b43cccf7ab2a35b1a8e3b9853569bd274e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Autism spectrum disorder</topic><topic>Cerebral Cortex - abnormalities</topic><topic>Cerebral Cortex - growth &amp; development</topic><topic>Conditioning (Psychology) - physiology</topic><topic>Dendritic Spines - pathology</topic><topic>Dendritic Spines - physiology</topic><topic>Development</topic><topic>Endophenotypes</topic><topic>Epilepsy</topic><topic>Exploratory Behavior - physiology</topic><topic>Fear - physiology</topic><topic>Haploinsufficiency</topic><topic>Hippocampus - abnormalities</topic><topic>Hippocampus - growth &amp; development</topic><topic>Intellectual disability</topic><topic>Maze Learning - physiology</topic><topic>Mice, Transgenic</topic><topic>Mouse model</topic><topic>Neural Pathways - abnormalities</topic><topic>Neural Pathways - growth &amp; development</topic><topic>Psychiatry</topic><topic>Pyramidal Cells - pathology</topic><topic>Pyramidal Cells - physiology</topic><topic>ras GTPase-Activating Proteins - deficiency</topic><topic>ras GTPase-Activating Proteins - genetics</topic><topic>Sensory Deprivation - physiology</topic><topic>Synapse</topic><topic>Syngap1</topic><topic>Vibrissae - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aceti, Massimiliano</creatorcontrib><creatorcontrib>Creson, Thomas K</creatorcontrib><creatorcontrib>Vaissiere, Thomas</creatorcontrib><creatorcontrib>Rojas, Camilo</creatorcontrib><creatorcontrib>Huang, Wen-Chin</creatorcontrib><creatorcontrib>Wang, Ya-Xian</creatorcontrib><creatorcontrib>Petralia, Ronald S</creatorcontrib><creatorcontrib>Page, Damon T</creatorcontrib><creatorcontrib>Miller, Courtney A</creatorcontrib><creatorcontrib>Rumbaugh, Gavin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biological psychiatry (1969)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aceti, Massimiliano</au><au>Creson, Thomas K</au><au>Vaissiere, Thomas</au><au>Rojas, Camilo</au><au>Huang, Wen-Chin</au><au>Wang, Ya-Xian</au><au>Petralia, Ronald S</au><au>Page, Damon T</au><au>Miller, Courtney A</au><au>Rumbaugh, Gavin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syngap1 Haploinsufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly</atitle><jtitle>Biological psychiatry (1969)</jtitle><addtitle>Biol Psychiatry</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>77</volume><issue>9</issue><spage>805</spage><epage>815</epage><pages>805-815</pages><issn>0006-3223</issn><eissn>1873-2402</eissn><abstract>Abstract Background Genetic haploinsufficiency of SYNGAP1/Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathologic developmental processes common among distinct brain disorders. Methods A Syngap1 haploinsufficiency model was used to explore the relationship between critical period dendritic spine abnormalities, cortical circuit assembly, and the window for genetic rescue to understand how damaging mutations disrupt key substrates of mouse brain development. Results Syngap1 mutations broadly disrupted a developmentally sensitive period that corresponded to the period of heightened postnatal cortical synaptogenesis. Pathogenic Syngap1 mutations caused a coordinated acceleration of dendrite elongation and spine morphogenesis and pruning of these structures in neonatal cortical pyramidal neurons. These mutations also prevented a form of developmental structural plasticity associated with experience-dependent reorganization of brain circuits. Consistent with these findings, Syngap1 mutant mice displayed an altered pattern of long-distance synaptic inputs into a cortical area important for cognition. Interestingly, the ability to genetically improve the behavioral endophenotype of Syngap1 mice decreased slowly over postnatal development and mapped onto the developmental period of coordinated dendritic insults. Conclusions Pathogenic Syngap1 mutations have a profound impact on the dynamics and structural integrity of pyramidal cell postsynaptic structures known to guide the de novo wiring of nascent cortical circuits. These findings support the idea that disrupted critical periods of dendritic growth and spine plasticity may be a common pathologic process in developmental brain disorders.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25444158</pmid><doi>10.1016/j.biopsych.2014.08.001</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6632-1398</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3223
ispartof Biological psychiatry (1969), 2015-05, Vol.77 (9), p.805-815
issn 0006-3223
1873-2402
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4326604
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Animals, Newborn
Autism spectrum disorder
Cerebral Cortex - abnormalities
Cerebral Cortex - growth & development
Conditioning (Psychology) - physiology
Dendritic Spines - pathology
Dendritic Spines - physiology
Development
Endophenotypes
Epilepsy
Exploratory Behavior - physiology
Fear - physiology
Haploinsufficiency
Hippocampus - abnormalities
Hippocampus - growth & development
Intellectual disability
Maze Learning - physiology
Mice, Transgenic
Mouse model
Neural Pathways - abnormalities
Neural Pathways - growth & development
Psychiatry
Pyramidal Cells - pathology
Pyramidal Cells - physiology
ras GTPase-Activating Proteins - deficiency
ras GTPase-Activating Proteins - genetics
Sensory Deprivation - physiology
Synapse
Syngap1
Vibrissae - physiology
title Syngap1 Haploinsufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syngap1%20Haploinsufficiency%20Damages%20a%20Postnatal%20Critical%20Period%20of%20Pyramidal%20Cell%20Structural%20Maturation%20Linked%20to%20Cortical%20Circuit%20Assembly&rft.jtitle=Biological%20psychiatry%20(1969)&rft.au=Aceti,%20Massimiliano&rft.date=2015-05-01&rft.volume=77&rft.issue=9&rft.spage=805&rft.epage=815&rft.pages=805-815&rft.issn=0006-3223&rft.eissn=1873-2402&rft_id=info:doi/10.1016/j.biopsych.2014.08.001&rft_dat=%3Cproquest_pubme%3E1671213130%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671213130&rft_id=info:pmid/25444158&rft_els_id=S0006322314005939&rfr_iscdi=true