Sodium sensing in the brain

Sodium (Na) homeostasis is crucial for life, and the Na + level ([Na + ]) of body fluids is strictly maintained at a range of 135–145 mM. However, the existence of a [Na + ] sensor in the brain has long been controversial until Na x was identified as the molecular entity of the sensor. This review p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 2015-03, Vol.467 (3), p.465-474
Hauptverfasser: Noda, Masaharu, Hiyama, Takeshi Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 474
container_issue 3
container_start_page 465
container_title Pflügers Archiv
container_volume 467
creator Noda, Masaharu
Hiyama, Takeshi Y.
description Sodium (Na) homeostasis is crucial for life, and the Na + level ([Na + ]) of body fluids is strictly maintained at a range of 135–145 mM. However, the existence of a [Na + ] sensor in the brain has long been controversial until Na x was identified as the molecular entity of the sensor. This review provides an overview of the [Na + ]-sensing mechanism in the brain for the regulation of salt intake by summarizing a series of our studies on Na x . Na x is a Na channel expressed in the circumventricular organs (CVOs) in the brain. Among the CVOs, the subfornical organ (SFO) is the principal site for the control of salt intake behavior, where Na x populates the cellular processes of astrocytes and ependymal cells enveloping neurons. A local expression of endothelin-3 in the SFO modulates the [Na + ] sensitivity for Na x activation, and thereby Na x is likely to be activated in the physiological [Na + ] range. Na x stably interacts with Na + /K + -ATPase whereby Na + influx via Na x is coupled with activation of Na + /K + -ATPase associated with the consumption of ATP. The consequent activation of anaerobic glucose metabolism of Na x -positive glial cells upregulates the cellular release of lactate, and this lactate functions as a gliotransmitter to activate GABAergic neurons in the SFO. The GABAergic neurons presumably regulate hypothetic neurons involved in the control of salt intake behavior. Recently, a patient with essential hypernatremia caused by autoimmunity to Na x was found. In this case, the hypernatremia was considered to be induced by the complement-mediated cell death in the CVOs, where Na x specifically populates.
doi_str_mv 10.1007/s00424-014-1662-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4325189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3587699671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-a3bccb6b7cdd042cd1ba428c50d8d8fda0ed1c02d8b3466fec54240fab8494203</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMo7vrxB4ggC168VCfpNO1eBFn8ggUP6jmkSbrbpU3XpBX8703puqyCpznM772Z9wg5o3BNAdIbD4AMI6AYUc5ZhHtkTDFmEQMa75MxQEwjnvJsRI68XwEAw4wdkhFLcEoTiMfk_LXRZVdPvLG-tItJaSft0kxyJ0t7Qg4KWXlzupnH5P3h_m32FM1fHp9nd_NIJQhtJONcqZznqdI6_KM0zSWyTCWgM50VWoLRVAHTWR4j54UJMoZQyDzDKTKIj8nt4Lvu8tpoZWzrZCXWrqyl-xKNLMXvjS2XYtF8ihA1odk0GFxtDFzz0Rnfirr0ylSVtKbpvKA8SRgHmPa3Lv-gq6ZzNsTrKUxSBMRA0YFSrvHemWL7DAXRVy-G6kWoXvTVi15zsZtiq_jpOgBsAHxY2YVxO6f_df0GH4iNdw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654574044</pqid></control><display><type>article</type><title>Sodium sensing in the brain</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Noda, Masaharu ; Hiyama, Takeshi Y.</creator><creatorcontrib>Noda, Masaharu ; Hiyama, Takeshi Y.</creatorcontrib><description>Sodium (Na) homeostasis is crucial for life, and the Na + level ([Na + ]) of body fluids is strictly maintained at a range of 135–145 mM. However, the existence of a [Na + ] sensor in the brain has long been controversial until Na x was identified as the molecular entity of the sensor. This review provides an overview of the [Na + ]-sensing mechanism in the brain for the regulation of salt intake by summarizing a series of our studies on Na x . Na x is a Na channel expressed in the circumventricular organs (CVOs) in the brain. Among the CVOs, the subfornical organ (SFO) is the principal site for the control of salt intake behavior, where Na x populates the cellular processes of astrocytes and ependymal cells enveloping neurons. A local expression of endothelin-3 in the SFO modulates the [Na + ] sensitivity for Na x activation, and thereby Na x is likely to be activated in the physiological [Na + ] range. Na x stably interacts with Na + /K + -ATPase whereby Na + influx via Na x is coupled with activation of Na + /K + -ATPase associated with the consumption of ATP. The consequent activation of anaerobic glucose metabolism of Na x -positive glial cells upregulates the cellular release of lactate, and this lactate functions as a gliotransmitter to activate GABAergic neurons in the SFO. The GABAergic neurons presumably regulate hypothetic neurons involved in the control of salt intake behavior. Recently, a patient with essential hypernatremia caused by autoimmunity to Na x was found. In this case, the hypernatremia was considered to be induced by the complement-mediated cell death in the CVOs, where Na x specifically populates.</description><identifier>ISSN: 0031-6768</identifier><identifier>ISSN: 1432-2013</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-014-1662-4</identifier><identifier>PMID: 25491503</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Biomedical and Life Sciences ; Biomedicine ; Brain - metabolism ; Brain - physiology ; Cell Biology ; Human Physiology ; Humans ; Invited Review ; Molecular Medicine ; Neurosciences ; Neurotransmitter Agents - metabolism ; Receptors ; Sodium - metabolism ; Sodium-Potassium-Exchanging ATPase - metabolism ; Subfornical Organ - metabolism ; Subfornical Organ - physiology ; Voltage-Gated Sodium Channels - metabolism</subject><ispartof>Pflügers Archiv, 2015-03, Vol.467 (3), p.465-474</ispartof><rights>The Author(s) 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-a3bccb6b7cdd042cd1ba428c50d8d8fda0ed1c02d8b3466fec54240fab8494203</citedby><cites>FETCH-LOGICAL-c540t-a3bccb6b7cdd042cd1ba428c50d8d8fda0ed1c02d8b3466fec54240fab8494203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00424-014-1662-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00424-014-1662-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25491503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Noda, Masaharu</creatorcontrib><creatorcontrib>Hiyama, Takeshi Y.</creatorcontrib><title>Sodium sensing in the brain</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><addtitle>Pflugers Arch</addtitle><description>Sodium (Na) homeostasis is crucial for life, and the Na + level ([Na + ]) of body fluids is strictly maintained at a range of 135–145 mM. However, the existence of a [Na + ] sensor in the brain has long been controversial until Na x was identified as the molecular entity of the sensor. This review provides an overview of the [Na + ]-sensing mechanism in the brain for the regulation of salt intake by summarizing a series of our studies on Na x . Na x is a Na channel expressed in the circumventricular organs (CVOs) in the brain. Among the CVOs, the subfornical organ (SFO) is the principal site for the control of salt intake behavior, where Na x populates the cellular processes of astrocytes and ependymal cells enveloping neurons. A local expression of endothelin-3 in the SFO modulates the [Na + ] sensitivity for Na x activation, and thereby Na x is likely to be activated in the physiological [Na + ] range. Na x stably interacts with Na + /K + -ATPase whereby Na + influx via Na x is coupled with activation of Na + /K + -ATPase associated with the consumption of ATP. The consequent activation of anaerobic glucose metabolism of Na x -positive glial cells upregulates the cellular release of lactate, and this lactate functions as a gliotransmitter to activate GABAergic neurons in the SFO. The GABAergic neurons presumably regulate hypothetic neurons involved in the control of salt intake behavior. Recently, a patient with essential hypernatremia caused by autoimmunity to Na x was found. In this case, the hypernatremia was considered to be induced by the complement-mediated cell death in the CVOs, where Na x specifically populates.</description><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - metabolism</subject><subject>Brain - physiology</subject><subject>Cell Biology</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Invited Review</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Receptors</subject><subject>Sodium - metabolism</subject><subject>Sodium-Potassium-Exchanging ATPase - metabolism</subject><subject>Subfornical Organ - metabolism</subject><subject>Subfornical Organ - physiology</subject><subject>Voltage-Gated Sodium Channels - metabolism</subject><issn>0031-6768</issn><issn>1432-2013</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LxDAQxYMo7vrxB4ggC168VCfpNO1eBFn8ggUP6jmkSbrbpU3XpBX8703puqyCpznM772Z9wg5o3BNAdIbD4AMI6AYUc5ZhHtkTDFmEQMa75MxQEwjnvJsRI68XwEAw4wdkhFLcEoTiMfk_LXRZVdPvLG-tItJaSft0kxyJ0t7Qg4KWXlzupnH5P3h_m32FM1fHp9nd_NIJQhtJONcqZznqdI6_KM0zSWyTCWgM50VWoLRVAHTWR4j54UJMoZQyDzDKTKIj8nt4Lvu8tpoZWzrZCXWrqyl-xKNLMXvjS2XYtF8ihA1odk0GFxtDFzz0Rnfirr0ylSVtKbpvKA8SRgHmPa3Lv-gq6ZzNsTrKUxSBMRA0YFSrvHemWL7DAXRVy-G6kWoXvTVi15zsZtiq_jpOgBsAHxY2YVxO6f_df0GH4iNdw</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Noda, Masaharu</creator><creator>Hiyama, Takeshi Y.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150301</creationdate><title>Sodium sensing in the brain</title><author>Noda, Masaharu ; Hiyama, Takeshi Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-a3bccb6b7cdd042cd1ba428c50d8d8fda0ed1c02d8b3466fec54240fab8494203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - metabolism</topic><topic>Brain - physiology</topic><topic>Cell Biology</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Invited Review</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Receptors</topic><topic>Sodium - metabolism</topic><topic>Sodium-Potassium-Exchanging ATPase - metabolism</topic><topic>Subfornical Organ - metabolism</topic><topic>Subfornical Organ - physiology</topic><topic>Voltage-Gated Sodium Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noda, Masaharu</creatorcontrib><creatorcontrib>Hiyama, Takeshi Y.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noda, Masaharu</au><au>Hiyama, Takeshi Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium sensing in the brain</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><addtitle>Pflugers Arch</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>467</volume><issue>3</issue><spage>465</spage><epage>474</epage><pages>465-474</pages><issn>0031-6768</issn><issn>1432-2013</issn><eissn>1432-2013</eissn><abstract>Sodium (Na) homeostasis is crucial for life, and the Na + level ([Na + ]) of body fluids is strictly maintained at a range of 135–145 mM. However, the existence of a [Na + ] sensor in the brain has long been controversial until Na x was identified as the molecular entity of the sensor. This review provides an overview of the [Na + ]-sensing mechanism in the brain for the regulation of salt intake by summarizing a series of our studies on Na x . Na x is a Na channel expressed in the circumventricular organs (CVOs) in the brain. Among the CVOs, the subfornical organ (SFO) is the principal site for the control of salt intake behavior, where Na x populates the cellular processes of astrocytes and ependymal cells enveloping neurons. A local expression of endothelin-3 in the SFO modulates the [Na + ] sensitivity for Na x activation, and thereby Na x is likely to be activated in the physiological [Na + ] range. Na x stably interacts with Na + /K + -ATPase whereby Na + influx via Na x is coupled with activation of Na + /K + -ATPase associated with the consumption of ATP. The consequent activation of anaerobic glucose metabolism of Na x -positive glial cells upregulates the cellular release of lactate, and this lactate functions as a gliotransmitter to activate GABAergic neurons in the SFO. The GABAergic neurons presumably regulate hypothetic neurons involved in the control of salt intake behavior. Recently, a patient with essential hypernatremia caused by autoimmunity to Na x was found. In this case, the hypernatremia was considered to be induced by the complement-mediated cell death in the CVOs, where Na x specifically populates.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25491503</pmid><doi>10.1007/s00424-014-1662-4</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-6768
ispartof Pflügers Archiv, 2015-03, Vol.467 (3), p.465-474
issn 0031-6768
1432-2013
1432-2013
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4325189
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Biomedical and Life Sciences
Biomedicine
Brain - metabolism
Brain - physiology
Cell Biology
Human Physiology
Humans
Invited Review
Molecular Medicine
Neurosciences
Neurotransmitter Agents - metabolism
Receptors
Sodium - metabolism
Sodium-Potassium-Exchanging ATPase - metabolism
Subfornical Organ - metabolism
Subfornical Organ - physiology
Voltage-Gated Sodium Channels - metabolism
title Sodium sensing in the brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium%20sensing%20in%20the%20brain&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Noda,%20Masaharu&rft.date=2015-03-01&rft.volume=467&rft.issue=3&rft.spage=465&rft.epage=474&rft.pages=465-474&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-014-1662-4&rft_dat=%3Cproquest_pubme%3E3587699671%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654574044&rft_id=info:pmid/25491503&rfr_iscdi=true