Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics

We present a RNA deep sequencing (RNAseq) analysis of a comparison of the transcriptome responses to infection of zebrafish larvae with Staphylococcus epidermidis and Mycobacterium marinum bacteria. We show how our developed GeneTiles software can improve RNAseq analysis approaches by more confident...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunogenetics (New York) 2015-03, Vol.67 (3), p.135-147
Hauptverfasser: Veneman, Wouter J., de Sonneville, Jan, van der Kolk, Kees-Jan, Ordas, Anita, Al-Ars, Zaid, Meijer, Annemarie H., Spaink, Herman P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 3
container_start_page 135
container_title Immunogenetics (New York)
container_volume 67
creator Veneman, Wouter J.
de Sonneville, Jan
van der Kolk, Kees-Jan
Ordas, Anita
Al-Ars, Zaid
Meijer, Annemarie H.
Spaink, Herman P.
description We present a RNA deep sequencing (RNAseq) analysis of a comparison of the transcriptome responses to infection of zebrafish larvae with Staphylococcus epidermidis and Mycobacterium marinum bacteria. We show how our developed GeneTiles software can improve RNAseq analysis approaches by more confidently identifying a large set of markers upon infection with these bacteria . For analysis of RNAseq data currently, software programs such as Bowtie2 and Samtools are indispensable. However, these programs that are designed for a LINUX environment require some dedicated programming skills and have no options for visualisation of the resulting mapped sequence reads. Especially with large data sets, this makes the analysis time consuming and difficult for non-expert users. We have applied the GeneTiles software to the analysis of previously published and newly obtained RNAseq datasets of our zebrafish infection model, and we have shown the applicability of this approach also to published RNAseq datasets of other organisms by comparing our data with a published mammalian infection study. In addition, we have implemented the DEXSeq module in the GeneTiles software to identify genes, such as glucagon A, that are differentially spliced under infection conditions. In the analysis of our RNAseq data, this has led to the possibility to improve the size of data sets that could be efficiently compared without using problem-dedicated programs, leading to a quick identification of marker sets. Therefore, this approach will also be highly useful for transcriptome analyses of other organisms for which well-characterised genomes are available.
doi_str_mv 10.1007/s00251-014-0820-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4325186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3587698551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-f65286964d691e05d984ddbd38a63138760946888b3ce2821cce1f72febf0b873</originalsourceid><addsrcrecordid>eNp1kU9r3DAQxUVpaTZpP0AvRdBLL271x5LlS2EJbVoICYT0LGR5tFGwrY3GDiSfvtpsGtJCTjrM7z29mUfIB86-cMaar8iYULxivK6YEaySr8iK11JUXHD-mqwYa2XVNJwfkEPEa8a4aoV-Sw6EUkwyXa_Idj254Q4j0hToxdka4Yb2bnYIM9KQ00gd9WncuuzmeAs0TgH8HNOCtI8IhaP30GUXIl7RMfUw0AXjtKEnMMFlHABpF1NRpTwWB4_vyJvgBoT3j-8R-f3j--Xxz-r0_OTX8fq08iXaXAWthNGtrnvdcmCqb03d910vjdOSS9No1tbaGNNJD8II7j3w0IgAXWCdaeQR-bb33S7dCL2Hac5usNscR5fvbHLR_juZ4pXdpFtb7qe40cXg86NBTjcL4GzHiB6GwU1Q1rdcKyVKCrZDP_2HXqcll8M-ULVqRAELxfeUzwkxQ3gKw5nd9Wn3fdrSp931aWXRfHy-xZPib4EFEHsAy2jaQH729YuufwDBn6yM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654572260</pqid></control><display><type>article</type><title>Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Veneman, Wouter J. ; de Sonneville, Jan ; van der Kolk, Kees-Jan ; Ordas, Anita ; Al-Ars, Zaid ; Meijer, Annemarie H. ; Spaink, Herman P.</creator><creatorcontrib>Veneman, Wouter J. ; de Sonneville, Jan ; van der Kolk, Kees-Jan ; Ordas, Anita ; Al-Ars, Zaid ; Meijer, Annemarie H. ; Spaink, Herman P.</creatorcontrib><description>We present a RNA deep sequencing (RNAseq) analysis of a comparison of the transcriptome responses to infection of zebrafish larvae with Staphylococcus epidermidis and Mycobacterium marinum bacteria. We show how our developed GeneTiles software can improve RNAseq analysis approaches by more confidently identifying a large set of markers upon infection with these bacteria . For analysis of RNAseq data currently, software programs such as Bowtie2 and Samtools are indispensable. However, these programs that are designed for a LINUX environment require some dedicated programming skills and have no options for visualisation of the resulting mapped sequence reads. Especially with large data sets, this makes the analysis time consuming and difficult for non-expert users. We have applied the GeneTiles software to the analysis of previously published and newly obtained RNAseq datasets of our zebrafish infection model, and we have shown the applicability of this approach also to published RNAseq datasets of other organisms by comparing our data with a published mammalian infection study. In addition, we have implemented the DEXSeq module in the GeneTiles software to identify genes, such as glucagon A, that are differentially spliced under infection conditions. In the analysis of our RNAseq data, this has led to the possibility to improve the size of data sets that could be efficiently compared without using problem-dedicated programs, leading to a quick identification of marker sets. Therefore, this approach will also be highly useful for transcriptome analyses of other organisms for which well-characterised genomes are available.</description><identifier>ISSN: 0093-7711</identifier><identifier>EISSN: 1432-1211</identifier><identifier>DOI: 10.1007/s00251-014-0820-3</identifier><identifier>PMID: 25503064</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Allergology ; Alternative Splicing ; Animals ; Automation ; Bacteria ; Bioinformatics ; Biology ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Datasets ; Disease Models, Animal ; Fish Diseases - genetics ; Fish Diseases - microbiology ; Fish Proteins - genetics ; Gene Expression Profiling ; Gene Function ; Genomes ; Genomics ; Glucagon - genetics ; High-Throughput Nucleotide Sequencing ; Host-Pathogen Interactions ; Human Genetics ; Immunology ; Infections ; Infectious diseases ; Larva - genetics ; Larva - microbiology ; Larvae ; Metabolic Networks and Pathways ; Molecular Sequence Annotation ; Mycobacterium Infections, Nontuberculous - genetics ; Mycobacterium Infections, Nontuberculous - microbiology ; Mycobacterium Infections, Nontuberculous - veterinary ; Mycobacterium marinum - growth &amp; development ; Original Paper ; Software ; Staphylococcal Infections - genetics ; Staphylococcal Infections - microbiology ; Staphylococcal Infections - veterinary ; Staphylococcus epidermidis - growth &amp; development ; Transcriptome ; Zebrafish ; Zebrafish - genetics ; Zebrafish - microbiology</subject><ispartof>Immunogenetics (New York), 2015-03, Vol.67 (3), p.135-147</ispartof><rights>The Author(s) 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-f65286964d691e05d984ddbd38a63138760946888b3ce2821cce1f72febf0b873</citedby><cites>FETCH-LOGICAL-c503t-f65286964d691e05d984ddbd38a63138760946888b3ce2821cce1f72febf0b873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00251-014-0820-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00251-014-0820-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25503064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Veneman, Wouter J.</creatorcontrib><creatorcontrib>de Sonneville, Jan</creatorcontrib><creatorcontrib>van der Kolk, Kees-Jan</creatorcontrib><creatorcontrib>Ordas, Anita</creatorcontrib><creatorcontrib>Al-Ars, Zaid</creatorcontrib><creatorcontrib>Meijer, Annemarie H.</creatorcontrib><creatorcontrib>Spaink, Herman P.</creatorcontrib><title>Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics</title><title>Immunogenetics (New York)</title><addtitle>Immunogenetics</addtitle><addtitle>Immunogenetics</addtitle><description>We present a RNA deep sequencing (RNAseq) analysis of a comparison of the transcriptome responses to infection of zebrafish larvae with Staphylococcus epidermidis and Mycobacterium marinum bacteria. We show how our developed GeneTiles software can improve RNAseq analysis approaches by more confidently identifying a large set of markers upon infection with these bacteria . For analysis of RNAseq data currently, software programs such as Bowtie2 and Samtools are indispensable. However, these programs that are designed for a LINUX environment require some dedicated programming skills and have no options for visualisation of the resulting mapped sequence reads. Especially with large data sets, this makes the analysis time consuming and difficult for non-expert users. We have applied the GeneTiles software to the analysis of previously published and newly obtained RNAseq datasets of our zebrafish infection model, and we have shown the applicability of this approach also to published RNAseq datasets of other organisms by comparing our data with a published mammalian infection study. In addition, we have implemented the DEXSeq module in the GeneTiles software to identify genes, such as glucagon A, that are differentially spliced under infection conditions. In the analysis of our RNAseq data, this has led to the possibility to improve the size of data sets that could be efficiently compared without using problem-dedicated programs, leading to a quick identification of marker sets. Therefore, this approach will also be highly useful for transcriptome analyses of other organisms for which well-characterised genomes are available.</description><subject>Allergology</subject><subject>Alternative Splicing</subject><subject>Animals</subject><subject>Automation</subject><subject>Bacteria</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Datasets</subject><subject>Disease Models, Animal</subject><subject>Fish Diseases - genetics</subject><subject>Fish Diseases - microbiology</subject><subject>Fish Proteins - genetics</subject><subject>Gene Expression Profiling</subject><subject>Gene Function</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glucagon - genetics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Host-Pathogen Interactions</subject><subject>Human Genetics</subject><subject>Immunology</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Larva - genetics</subject><subject>Larva - microbiology</subject><subject>Larvae</subject><subject>Metabolic Networks and Pathways</subject><subject>Molecular Sequence Annotation</subject><subject>Mycobacterium Infections, Nontuberculous - genetics</subject><subject>Mycobacterium Infections, Nontuberculous - microbiology</subject><subject>Mycobacterium Infections, Nontuberculous - veterinary</subject><subject>Mycobacterium marinum - growth &amp; development</subject><subject>Original Paper</subject><subject>Software</subject><subject>Staphylococcal Infections - genetics</subject><subject>Staphylococcal Infections - microbiology</subject><subject>Staphylococcal Infections - veterinary</subject><subject>Staphylococcus epidermidis - growth &amp; development</subject><subject>Transcriptome</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - microbiology</subject><issn>0093-7711</issn><issn>1432-1211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU9r3DAQxUVpaTZpP0AvRdBLL271x5LlS2EJbVoICYT0LGR5tFGwrY3GDiSfvtpsGtJCTjrM7z29mUfIB86-cMaar8iYULxivK6YEaySr8iK11JUXHD-mqwYa2XVNJwfkEPEa8a4aoV-Sw6EUkwyXa_Idj254Q4j0hToxdka4Yb2bnYIM9KQ00gd9WncuuzmeAs0TgH8HNOCtI8IhaP30GUXIl7RMfUw0AXjtKEnMMFlHABpF1NRpTwWB4_vyJvgBoT3j-8R-f3j--Xxz-r0_OTX8fq08iXaXAWthNGtrnvdcmCqb03d910vjdOSS9No1tbaGNNJD8II7j3w0IgAXWCdaeQR-bb33S7dCL2Hac5usNscR5fvbHLR_juZ4pXdpFtb7qe40cXg86NBTjcL4GzHiB6GwU1Q1rdcKyVKCrZDP_2HXqcll8M-ULVqRAELxfeUzwkxQ3gKw5nd9Wn3fdrSp931aWXRfHy-xZPib4EFEHsAy2jaQH729YuufwDBn6yM</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Veneman, Wouter J.</creator><creator>de Sonneville, Jan</creator><creator>van der Kolk, Kees-Jan</creator><creator>Ordas, Anita</creator><creator>Al-Ars, Zaid</creator><creator>Meijer, Annemarie H.</creator><creator>Spaink, Herman P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150301</creationdate><title>Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics</title><author>Veneman, Wouter J. ; de Sonneville, Jan ; van der Kolk, Kees-Jan ; Ordas, Anita ; Al-Ars, Zaid ; Meijer, Annemarie H. ; Spaink, Herman P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-f65286964d691e05d984ddbd38a63138760946888b3ce2821cce1f72febf0b873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Allergology</topic><topic>Alternative Splicing</topic><topic>Animals</topic><topic>Automation</topic><topic>Bacteria</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Datasets</topic><topic>Disease Models, Animal</topic><topic>Fish Diseases - genetics</topic><topic>Fish Diseases - microbiology</topic><topic>Fish Proteins - genetics</topic><topic>Gene Expression Profiling</topic><topic>Gene Function</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glucagon - genetics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Host-Pathogen Interactions</topic><topic>Human Genetics</topic><topic>Immunology</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Larva - genetics</topic><topic>Larva - microbiology</topic><topic>Larvae</topic><topic>Metabolic Networks and Pathways</topic><topic>Molecular Sequence Annotation</topic><topic>Mycobacterium Infections, Nontuberculous - genetics</topic><topic>Mycobacterium Infections, Nontuberculous - microbiology</topic><topic>Mycobacterium Infections, Nontuberculous - veterinary</topic><topic>Mycobacterium marinum - growth &amp; development</topic><topic>Original Paper</topic><topic>Software</topic><topic>Staphylococcal Infections - genetics</topic><topic>Staphylococcal Infections - microbiology</topic><topic>Staphylococcal Infections - veterinary</topic><topic>Staphylococcus epidermidis - growth &amp; development</topic><topic>Transcriptome</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veneman, Wouter J.</creatorcontrib><creatorcontrib>de Sonneville, Jan</creatorcontrib><creatorcontrib>van der Kolk, Kees-Jan</creatorcontrib><creatorcontrib>Ordas, Anita</creatorcontrib><creatorcontrib>Al-Ars, Zaid</creatorcontrib><creatorcontrib>Meijer, Annemarie H.</creatorcontrib><creatorcontrib>Spaink, Herman P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunogenetics (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veneman, Wouter J.</au><au>de Sonneville, Jan</au><au>van der Kolk, Kees-Jan</au><au>Ordas, Anita</au><au>Al-Ars, Zaid</au><au>Meijer, Annemarie H.</au><au>Spaink, Herman P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics</atitle><jtitle>Immunogenetics (New York)</jtitle><stitle>Immunogenetics</stitle><addtitle>Immunogenetics</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>67</volume><issue>3</issue><spage>135</spage><epage>147</epage><pages>135-147</pages><issn>0093-7711</issn><eissn>1432-1211</eissn><abstract>We present a RNA deep sequencing (RNAseq) analysis of a comparison of the transcriptome responses to infection of zebrafish larvae with Staphylococcus epidermidis and Mycobacterium marinum bacteria. We show how our developed GeneTiles software can improve RNAseq analysis approaches by more confidently identifying a large set of markers upon infection with these bacteria . For analysis of RNAseq data currently, software programs such as Bowtie2 and Samtools are indispensable. However, these programs that are designed for a LINUX environment require some dedicated programming skills and have no options for visualisation of the resulting mapped sequence reads. Especially with large data sets, this makes the analysis time consuming and difficult for non-expert users. We have applied the GeneTiles software to the analysis of previously published and newly obtained RNAseq datasets of our zebrafish infection model, and we have shown the applicability of this approach also to published RNAseq datasets of other organisms by comparing our data with a published mammalian infection study. In addition, we have implemented the DEXSeq module in the GeneTiles software to identify genes, such as glucagon A, that are differentially spliced under infection conditions. In the analysis of our RNAseq data, this has led to the possibility to improve the size of data sets that could be efficiently compared without using problem-dedicated programs, leading to a quick identification of marker sets. Therefore, this approach will also be highly useful for transcriptome analyses of other organisms for which well-characterised genomes are available.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25503064</pmid><doi>10.1007/s00251-014-0820-3</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0093-7711
ispartof Immunogenetics (New York), 2015-03, Vol.67 (3), p.135-147
issn 0093-7711
1432-1211
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4325186
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Allergology
Alternative Splicing
Animals
Automation
Bacteria
Bioinformatics
Biology
Biomedical and Life Sciences
Biomedicine
Cell Biology
Datasets
Disease Models, Animal
Fish Diseases - genetics
Fish Diseases - microbiology
Fish Proteins - genetics
Gene Expression Profiling
Gene Function
Genomes
Genomics
Glucagon - genetics
High-Throughput Nucleotide Sequencing
Host-Pathogen Interactions
Human Genetics
Immunology
Infections
Infectious diseases
Larva - genetics
Larva - microbiology
Larvae
Metabolic Networks and Pathways
Molecular Sequence Annotation
Mycobacterium Infections, Nontuberculous - genetics
Mycobacterium Infections, Nontuberculous - microbiology
Mycobacterium Infections, Nontuberculous - veterinary
Mycobacterium marinum - growth & development
Original Paper
Software
Staphylococcal Infections - genetics
Staphylococcal Infections - microbiology
Staphylococcal Infections - veterinary
Staphylococcus epidermidis - growth & development
Transcriptome
Zebrafish
Zebrafish - genetics
Zebrafish - microbiology
title Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20RNAseq%20datasets%20from%20a%20comparative%20infectious%20disease%20zebrafish%20model%20using%20GeneTiles%20bioinformatics&rft.jtitle=Immunogenetics%20(New%20York)&rft.au=Veneman,%20Wouter%20J.&rft.date=2015-03-01&rft.volume=67&rft.issue=3&rft.spage=135&rft.epage=147&rft.pages=135-147&rft.issn=0093-7711&rft.eissn=1432-1211&rft_id=info:doi/10.1007/s00251-014-0820-3&rft_dat=%3Cproquest_pubme%3E3587698551%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654572260&rft_id=info:pmid/25503064&rfr_iscdi=true