Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics
We present a RNA deep sequencing (RNAseq) analysis of a comparison of the transcriptome responses to infection of zebrafish larvae with Staphylococcus epidermidis and Mycobacterium marinum bacteria. We show how our developed GeneTiles software can improve RNAseq analysis approaches by more confident...
Gespeichert in:
Veröffentlicht in: | Immunogenetics (New York) 2015-03, Vol.67 (3), p.135-147 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 3 |
container_start_page | 135 |
container_title | Immunogenetics (New York) |
container_volume | 67 |
creator | Veneman, Wouter J. de Sonneville, Jan van der Kolk, Kees-Jan Ordas, Anita Al-Ars, Zaid Meijer, Annemarie H. Spaink, Herman P. |
description | We present a RNA deep sequencing (RNAseq) analysis of a comparison of the transcriptome responses to infection of zebrafish larvae with
Staphylococcus epidermidis
and
Mycobacterium marinum
bacteria. We show how our developed GeneTiles software can improve RNAseq analysis approaches by more confidently identifying a large set of markers upon infection with these bacteria
.
For analysis of RNAseq data currently, software programs such as Bowtie2 and Samtools are indispensable. However, these programs that are designed for a LINUX environment require some dedicated programming skills and have no options for visualisation of the resulting mapped sequence reads. Especially with large data sets, this makes the analysis time consuming and difficult for non-expert users. We have applied the GeneTiles software to the analysis of previously published and newly obtained RNAseq datasets of our zebrafish infection model, and we have shown the applicability of this approach also to published RNAseq datasets of other organisms by comparing our data with a published mammalian infection study. In addition, we have implemented the DEXSeq module in the GeneTiles software to identify genes, such as glucagon A, that are differentially spliced under infection conditions. In the analysis of our RNAseq data, this has led to the possibility to improve the size of data sets that could be efficiently compared without using problem-dedicated programs, leading to a quick identification of marker sets. Therefore, this approach will also be highly useful for transcriptome analyses of other organisms for which well-characterised genomes are available. |
doi_str_mv | 10.1007/s00251-014-0820-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4325186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3587698551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-f65286964d691e05d984ddbd38a63138760946888b3ce2821cce1f72febf0b873</originalsourceid><addsrcrecordid>eNp1kU9r3DAQxUVpaTZpP0AvRdBLL271x5LlS2EJbVoICYT0LGR5tFGwrY3GDiSfvtpsGtJCTjrM7z29mUfIB86-cMaar8iYULxivK6YEaySr8iK11JUXHD-mqwYa2XVNJwfkEPEa8a4aoV-Sw6EUkwyXa_Idj254Q4j0hToxdka4Yb2bnYIM9KQ00gd9WncuuzmeAs0TgH8HNOCtI8IhaP30GUXIl7RMfUw0AXjtKEnMMFlHABpF1NRpTwWB4_vyJvgBoT3j-8R-f3j--Xxz-r0_OTX8fq08iXaXAWthNGtrnvdcmCqb03d910vjdOSS9No1tbaGNNJD8II7j3w0IgAXWCdaeQR-bb33S7dCL2Hac5usNscR5fvbHLR_juZ4pXdpFtb7qe40cXg86NBTjcL4GzHiB6GwU1Q1rdcKyVKCrZDP_2HXqcll8M-ULVqRAELxfeUzwkxQ3gKw5nd9Wn3fdrSp931aWXRfHy-xZPib4EFEHsAy2jaQH729YuufwDBn6yM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654572260</pqid></control><display><type>article</type><title>Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Veneman, Wouter J. ; de Sonneville, Jan ; van der Kolk, Kees-Jan ; Ordas, Anita ; Al-Ars, Zaid ; Meijer, Annemarie H. ; Spaink, Herman P.</creator><creatorcontrib>Veneman, Wouter J. ; de Sonneville, Jan ; van der Kolk, Kees-Jan ; Ordas, Anita ; Al-Ars, Zaid ; Meijer, Annemarie H. ; Spaink, Herman P.</creatorcontrib><description>We present a RNA deep sequencing (RNAseq) analysis of a comparison of the transcriptome responses to infection of zebrafish larvae with
Staphylococcus epidermidis
and
Mycobacterium marinum
bacteria. We show how our developed GeneTiles software can improve RNAseq analysis approaches by more confidently identifying a large set of markers upon infection with these bacteria
.
For analysis of RNAseq data currently, software programs such as Bowtie2 and Samtools are indispensable. However, these programs that are designed for a LINUX environment require some dedicated programming skills and have no options for visualisation of the resulting mapped sequence reads. Especially with large data sets, this makes the analysis time consuming and difficult for non-expert users. We have applied the GeneTiles software to the analysis of previously published and newly obtained RNAseq datasets of our zebrafish infection model, and we have shown the applicability of this approach also to published RNAseq datasets of other organisms by comparing our data with a published mammalian infection study. In addition, we have implemented the DEXSeq module in the GeneTiles software to identify genes, such as glucagon A, that are differentially spliced under infection conditions. In the analysis of our RNAseq data, this has led to the possibility to improve the size of data sets that could be efficiently compared without using problem-dedicated programs, leading to a quick identification of marker sets. Therefore, this approach will also be highly useful for transcriptome analyses of other organisms for which well-characterised genomes are available.</description><identifier>ISSN: 0093-7711</identifier><identifier>EISSN: 1432-1211</identifier><identifier>DOI: 10.1007/s00251-014-0820-3</identifier><identifier>PMID: 25503064</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Allergology ; Alternative Splicing ; Animals ; Automation ; Bacteria ; Bioinformatics ; Biology ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Datasets ; Disease Models, Animal ; Fish Diseases - genetics ; Fish Diseases - microbiology ; Fish Proteins - genetics ; Gene Expression Profiling ; Gene Function ; Genomes ; Genomics ; Glucagon - genetics ; High-Throughput Nucleotide Sequencing ; Host-Pathogen Interactions ; Human Genetics ; Immunology ; Infections ; Infectious diseases ; Larva - genetics ; Larva - microbiology ; Larvae ; Metabolic Networks and Pathways ; Molecular Sequence Annotation ; Mycobacterium Infections, Nontuberculous - genetics ; Mycobacterium Infections, Nontuberculous - microbiology ; Mycobacterium Infections, Nontuberculous - veterinary ; Mycobacterium marinum - growth & development ; Original Paper ; Software ; Staphylococcal Infections - genetics ; Staphylococcal Infections - microbiology ; Staphylococcal Infections - veterinary ; Staphylococcus epidermidis - growth & development ; Transcriptome ; Zebrafish ; Zebrafish - genetics ; Zebrafish - microbiology</subject><ispartof>Immunogenetics (New York), 2015-03, Vol.67 (3), p.135-147</ispartof><rights>The Author(s) 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-f65286964d691e05d984ddbd38a63138760946888b3ce2821cce1f72febf0b873</citedby><cites>FETCH-LOGICAL-c503t-f65286964d691e05d984ddbd38a63138760946888b3ce2821cce1f72febf0b873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00251-014-0820-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00251-014-0820-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25503064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Veneman, Wouter J.</creatorcontrib><creatorcontrib>de Sonneville, Jan</creatorcontrib><creatorcontrib>van der Kolk, Kees-Jan</creatorcontrib><creatorcontrib>Ordas, Anita</creatorcontrib><creatorcontrib>Al-Ars, Zaid</creatorcontrib><creatorcontrib>Meijer, Annemarie H.</creatorcontrib><creatorcontrib>Spaink, Herman P.</creatorcontrib><title>Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics</title><title>Immunogenetics (New York)</title><addtitle>Immunogenetics</addtitle><addtitle>Immunogenetics</addtitle><description>We present a RNA deep sequencing (RNAseq) analysis of a comparison of the transcriptome responses to infection of zebrafish larvae with
Staphylococcus epidermidis
and
Mycobacterium marinum
bacteria. We show how our developed GeneTiles software can improve RNAseq analysis approaches by more confidently identifying a large set of markers upon infection with these bacteria
.
For analysis of RNAseq data currently, software programs such as Bowtie2 and Samtools are indispensable. However, these programs that are designed for a LINUX environment require some dedicated programming skills and have no options for visualisation of the resulting mapped sequence reads. Especially with large data sets, this makes the analysis time consuming and difficult for non-expert users. We have applied the GeneTiles software to the analysis of previously published and newly obtained RNAseq datasets of our zebrafish infection model, and we have shown the applicability of this approach also to published RNAseq datasets of other organisms by comparing our data with a published mammalian infection study. In addition, we have implemented the DEXSeq module in the GeneTiles software to identify genes, such as glucagon A, that are differentially spliced under infection conditions. In the analysis of our RNAseq data, this has led to the possibility to improve the size of data sets that could be efficiently compared without using problem-dedicated programs, leading to a quick identification of marker sets. Therefore, this approach will also be highly useful for transcriptome analyses of other organisms for which well-characterised genomes are available.</description><subject>Allergology</subject><subject>Alternative Splicing</subject><subject>Animals</subject><subject>Automation</subject><subject>Bacteria</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Datasets</subject><subject>Disease Models, Animal</subject><subject>Fish Diseases - genetics</subject><subject>Fish Diseases - microbiology</subject><subject>Fish Proteins - genetics</subject><subject>Gene Expression Profiling</subject><subject>Gene Function</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glucagon - genetics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Host-Pathogen Interactions</subject><subject>Human Genetics</subject><subject>Immunology</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Larva - genetics</subject><subject>Larva - microbiology</subject><subject>Larvae</subject><subject>Metabolic Networks and Pathways</subject><subject>Molecular Sequence Annotation</subject><subject>Mycobacterium Infections, Nontuberculous - genetics</subject><subject>Mycobacterium Infections, Nontuberculous - microbiology</subject><subject>Mycobacterium Infections, Nontuberculous - veterinary</subject><subject>Mycobacterium marinum - growth & development</subject><subject>Original Paper</subject><subject>Software</subject><subject>Staphylococcal Infections - genetics</subject><subject>Staphylococcal Infections - microbiology</subject><subject>Staphylococcal Infections - veterinary</subject><subject>Staphylococcus epidermidis - growth & development</subject><subject>Transcriptome</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - microbiology</subject><issn>0093-7711</issn><issn>1432-1211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU9r3DAQxUVpaTZpP0AvRdBLL271x5LlS2EJbVoICYT0LGR5tFGwrY3GDiSfvtpsGtJCTjrM7z29mUfIB86-cMaar8iYULxivK6YEaySr8iK11JUXHD-mqwYa2XVNJwfkEPEa8a4aoV-Sw6EUkwyXa_Idj254Q4j0hToxdka4Yb2bnYIM9KQ00gd9WncuuzmeAs0TgH8HNOCtI8IhaP30GUXIl7RMfUw0AXjtKEnMMFlHABpF1NRpTwWB4_vyJvgBoT3j-8R-f3j--Xxz-r0_OTX8fq08iXaXAWthNGtrnvdcmCqb03d910vjdOSS9No1tbaGNNJD8II7j3w0IgAXWCdaeQR-bb33S7dCL2Hac5usNscR5fvbHLR_juZ4pXdpFtb7qe40cXg86NBTjcL4GzHiB6GwU1Q1rdcKyVKCrZDP_2HXqcll8M-ULVqRAELxfeUzwkxQ3gKw5nd9Wn3fdrSp931aWXRfHy-xZPib4EFEHsAy2jaQH729YuufwDBn6yM</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Veneman, Wouter J.</creator><creator>de Sonneville, Jan</creator><creator>van der Kolk, Kees-Jan</creator><creator>Ordas, Anita</creator><creator>Al-Ars, Zaid</creator><creator>Meijer, Annemarie H.</creator><creator>Spaink, Herman P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150301</creationdate><title>Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics</title><author>Veneman, Wouter J. ; de Sonneville, Jan ; van der Kolk, Kees-Jan ; Ordas, Anita ; Al-Ars, Zaid ; Meijer, Annemarie H. ; Spaink, Herman P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-f65286964d691e05d984ddbd38a63138760946888b3ce2821cce1f72febf0b873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Allergology</topic><topic>Alternative Splicing</topic><topic>Animals</topic><topic>Automation</topic><topic>Bacteria</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Datasets</topic><topic>Disease Models, Animal</topic><topic>Fish Diseases - genetics</topic><topic>Fish Diseases - microbiology</topic><topic>Fish Proteins - genetics</topic><topic>Gene Expression Profiling</topic><topic>Gene Function</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glucagon - genetics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Host-Pathogen Interactions</topic><topic>Human Genetics</topic><topic>Immunology</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Larva - genetics</topic><topic>Larva - microbiology</topic><topic>Larvae</topic><topic>Metabolic Networks and Pathways</topic><topic>Molecular Sequence Annotation</topic><topic>Mycobacterium Infections, Nontuberculous - genetics</topic><topic>Mycobacterium Infections, Nontuberculous - microbiology</topic><topic>Mycobacterium Infections, Nontuberculous - veterinary</topic><topic>Mycobacterium marinum - growth & development</topic><topic>Original Paper</topic><topic>Software</topic><topic>Staphylococcal Infections - genetics</topic><topic>Staphylococcal Infections - microbiology</topic><topic>Staphylococcal Infections - veterinary</topic><topic>Staphylococcus epidermidis - growth & development</topic><topic>Transcriptome</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veneman, Wouter J.</creatorcontrib><creatorcontrib>de Sonneville, Jan</creatorcontrib><creatorcontrib>van der Kolk, Kees-Jan</creatorcontrib><creatorcontrib>Ordas, Anita</creatorcontrib><creatorcontrib>Al-Ars, Zaid</creatorcontrib><creatorcontrib>Meijer, Annemarie H.</creatorcontrib><creatorcontrib>Spaink, Herman P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunogenetics (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veneman, Wouter J.</au><au>de Sonneville, Jan</au><au>van der Kolk, Kees-Jan</au><au>Ordas, Anita</au><au>Al-Ars, Zaid</au><au>Meijer, Annemarie H.</au><au>Spaink, Herman P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics</atitle><jtitle>Immunogenetics (New York)</jtitle><stitle>Immunogenetics</stitle><addtitle>Immunogenetics</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>67</volume><issue>3</issue><spage>135</spage><epage>147</epage><pages>135-147</pages><issn>0093-7711</issn><eissn>1432-1211</eissn><abstract>We present a RNA deep sequencing (RNAseq) analysis of a comparison of the transcriptome responses to infection of zebrafish larvae with
Staphylococcus epidermidis
and
Mycobacterium marinum
bacteria. We show how our developed GeneTiles software can improve RNAseq analysis approaches by more confidently identifying a large set of markers upon infection with these bacteria
.
For analysis of RNAseq data currently, software programs such as Bowtie2 and Samtools are indispensable. However, these programs that are designed for a LINUX environment require some dedicated programming skills and have no options for visualisation of the resulting mapped sequence reads. Especially with large data sets, this makes the analysis time consuming and difficult for non-expert users. We have applied the GeneTiles software to the analysis of previously published and newly obtained RNAseq datasets of our zebrafish infection model, and we have shown the applicability of this approach also to published RNAseq datasets of other organisms by comparing our data with a published mammalian infection study. In addition, we have implemented the DEXSeq module in the GeneTiles software to identify genes, such as glucagon A, that are differentially spliced under infection conditions. In the analysis of our RNAseq data, this has led to the possibility to improve the size of data sets that could be efficiently compared without using problem-dedicated programs, leading to a quick identification of marker sets. Therefore, this approach will also be highly useful for transcriptome analyses of other organisms for which well-characterised genomes are available.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25503064</pmid><doi>10.1007/s00251-014-0820-3</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-7711 |
ispartof | Immunogenetics (New York), 2015-03, Vol.67 (3), p.135-147 |
issn | 0093-7711 1432-1211 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4325186 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Allergology Alternative Splicing Animals Automation Bacteria Bioinformatics Biology Biomedical and Life Sciences Biomedicine Cell Biology Datasets Disease Models, Animal Fish Diseases - genetics Fish Diseases - microbiology Fish Proteins - genetics Gene Expression Profiling Gene Function Genomes Genomics Glucagon - genetics High-Throughput Nucleotide Sequencing Host-Pathogen Interactions Human Genetics Immunology Infections Infectious diseases Larva - genetics Larva - microbiology Larvae Metabolic Networks and Pathways Molecular Sequence Annotation Mycobacterium Infections, Nontuberculous - genetics Mycobacterium Infections, Nontuberculous - microbiology Mycobacterium Infections, Nontuberculous - veterinary Mycobacterium marinum - growth & development Original Paper Software Staphylococcal Infections - genetics Staphylococcal Infections - microbiology Staphylococcal Infections - veterinary Staphylococcus epidermidis - growth & development Transcriptome Zebrafish Zebrafish - genetics Zebrafish - microbiology |
title | Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20RNAseq%20datasets%20from%20a%20comparative%20infectious%20disease%20zebrafish%20model%20using%20GeneTiles%20bioinformatics&rft.jtitle=Immunogenetics%20(New%20York)&rft.au=Veneman,%20Wouter%20J.&rft.date=2015-03-01&rft.volume=67&rft.issue=3&rft.spage=135&rft.epage=147&rft.pages=135-147&rft.issn=0093-7711&rft.eissn=1432-1211&rft_id=info:doi/10.1007/s00251-014-0820-3&rft_dat=%3Cproquest_pubme%3E3587698551%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654572260&rft_id=info:pmid/25503064&rfr_iscdi=true |