Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease

Abstract Hepatitis B virus (HBV) remains a major human pathogen, with over 240 million individuals suffering from chronic HBV infections. These can persist for decades due to the lack of therapies that can effectively target the stable viral covalently closed circular (ccc) DNA molecules present in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virology (New York, N.Y.) N.Y.), 2015-02, Vol.476, p.196-205
Hauptverfasser: Kennedy, Edward M, Bassit, Leda C, Mueller, Henrik, Kornepati, Anand V.R, Bogerd, Hal P, Nie, Ting, Chatterjee, Payel, Javanbakht, Hassan, Schinazi, Raymond F, Cullen, Bryan R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Hepatitis B virus (HBV) remains a major human pathogen, with over 240 million individuals suffering from chronic HBV infections. These can persist for decades due to the lack of therapies that can effectively target the stable viral covalently closed circular (ccc) DNA molecules present in infected hepatocytes. Using lentiviral transduction of a bacterial Cas9 gene and single guide RNAs (sgRNAs) specific for HBV, we observed effective inhibition of HBV DNA production in in vitro models of both chronic and de novo HBV infection. Cas9/sgRNA combinations specific for HBV reduced total viral DNA levels by up to ~1000-fold and HBV cccDNA levels by up to ~10-fold and also mutationally inactivated the majority of the residual viral DNA. Together, these data provide proof of principle for the hypothesis that CRISPR/Cas systems have the potential to serve as effective tools for the depletion of the cccDNA pool in chronically HBV infected individuals.
ISSN:0042-6822
1096-0341
DOI:10.1016/j.virol.2014.12.001