Imaging changes in the cytosolic ATP-to-ADP ratio

Adenosine triphosphate (ATP) is a central metabolite that plays fundamental roles as an energy transfer molecule, a phosphate donor, and a signaling molecule inside the cells. The phosphoryl group transfer potential of ATP provides a thermodynamic driving force for many metabolic reactions, and phos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in enzymology 2014, Vol.547, p.355-371
Hauptverfasser: Tantama, Mathew, Yellen, Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 371
container_issue
container_start_page 355
container_title Methods in enzymology
container_volume 547
creator Tantama, Mathew
Yellen, Gary
description Adenosine triphosphate (ATP) is a central metabolite that plays fundamental roles as an energy transfer molecule, a phosphate donor, and a signaling molecule inside the cells. The phosphoryl group transfer potential of ATP provides a thermodynamic driving force for many metabolic reactions, and phosphorylation of both small metabolites and large proteins can serve as a regulatory modification. In the process of phosphoryl transfer from ATP, the diphosphate ADP is produced, and as a result, the ATP-to-ADP ratio is an important physiological control parameter. The ATP-to-ADP ratio is directly proportional to cellular energy charge and phosphorylation potential. Furthermore, several ATP-dependent enzymes and signaling proteins are regulated by ADP, and their activation profiles are a function of the ATP-to-ADP ratio. Finally, regeneration of ATP from ADP can serve as an important readout of energy metabolism and mitochondrial function. We, therefore, developed a genetically encoded fluorescent biosensor tuned to sense ATP-to-ADP ratios in the physiological range of healthy mammalian cells. Here, we present a protocol for using this biosensor to visualize energy status using live-cell fluorescence microscopy.
doi_str_mv 10.1016/B978-0-12-801415-8.00017-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4323350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1627955307</sourcerecordid><originalsourceid>FETCH-LOGICAL-p318t-cd3e70cf201472db43493d89b3a5651555a452f4030180f5d3c6e17315515e993</originalsourceid><addsrcrecordid>eNpVkE1Lw0AYhBdRbK3-BQmevGx9393s10Wo9atQsId6DtvNJo0k2ZpNhf57A36gpznM8MwwhFwhTBFQ3twZpSlQZFQDpiiongIAKiqOyBiFUFQZrY_JGEBJKrUyI3IW4xsAU9rgKRkxkaLkUowJLhpbVm2ZuK1tSx-Tqk36rU_coQ8x1JVLZusV7QOd3a-SzvZVOCcnha2jv_jWCXl9fFjPn-ny5Wkxny3pjqPuqcu5V-AKNkxULN-kPDU812bDrZBiWClsKliRAgfUUIicO-lR8cFB4Y3hE3L7xd3tN43PnW_7ztbZrqsa2x2yYKvsv9NW26wMH1nKGecCBsD1N6AL73sf-6ypovN1bVsf9jFDyZQRgoMaopd_u35Lfn7inyQhaeg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627955307</pqid></control><display><type>article</type><title>Imaging changes in the cytosolic ATP-to-ADP ratio</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Tantama, Mathew ; Yellen, Gary</creator><creatorcontrib>Tantama, Mathew ; Yellen, Gary</creatorcontrib><description>Adenosine triphosphate (ATP) is a central metabolite that plays fundamental roles as an energy transfer molecule, a phosphate donor, and a signaling molecule inside the cells. The phosphoryl group transfer potential of ATP provides a thermodynamic driving force for many metabolic reactions, and phosphorylation of both small metabolites and large proteins can serve as a regulatory modification. In the process of phosphoryl transfer from ATP, the diphosphate ADP is produced, and as a result, the ATP-to-ADP ratio is an important physiological control parameter. The ATP-to-ADP ratio is directly proportional to cellular energy charge and phosphorylation potential. Furthermore, several ATP-dependent enzymes and signaling proteins are regulated by ADP, and their activation profiles are a function of the ATP-to-ADP ratio. Finally, regeneration of ATP from ADP can serve as an important readout of energy metabolism and mitochondrial function. We, therefore, developed a genetically encoded fluorescent biosensor tuned to sense ATP-to-ADP ratios in the physiological range of healthy mammalian cells. Here, we present a protocol for using this biosensor to visualize energy status using live-cell fluorescence microscopy.</description><identifier>ISSN: 0076-6879</identifier><identifier>EISSN: 1557-7988</identifier><identifier>DOI: 10.1016/B978-0-12-801415-8.00017-5</identifier><identifier>PMID: 25416365</identifier><language>eng</language><publisher>United States</publisher><subject>Adenosine Diphosphate - analysis ; Adenosine Diphosphate - metabolism ; Adenosine Triphosphate - analysis ; Adenosine Triphosphate - metabolism ; Animals ; Biosensing Techniques ; Brain - cytology ; Brain - metabolism ; Calibration ; Cells, Cultured ; Cytosol - metabolism ; Energy Metabolism ; HEK293 Cells ; Humans ; Image Processing, Computer-Assisted ; Mice ; Microscopy, Fluorescence - instrumentation ; Microscopy, Fluorescence - methods</subject><ispartof>Methods in enzymology, 2014, Vol.547, p.355-371</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25416365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tantama, Mathew</creatorcontrib><creatorcontrib>Yellen, Gary</creatorcontrib><title>Imaging changes in the cytosolic ATP-to-ADP ratio</title><title>Methods in enzymology</title><addtitle>Methods Enzymol</addtitle><description>Adenosine triphosphate (ATP) is a central metabolite that plays fundamental roles as an energy transfer molecule, a phosphate donor, and a signaling molecule inside the cells. The phosphoryl group transfer potential of ATP provides a thermodynamic driving force for many metabolic reactions, and phosphorylation of both small metabolites and large proteins can serve as a regulatory modification. In the process of phosphoryl transfer from ATP, the diphosphate ADP is produced, and as a result, the ATP-to-ADP ratio is an important physiological control parameter. The ATP-to-ADP ratio is directly proportional to cellular energy charge and phosphorylation potential. Furthermore, several ATP-dependent enzymes and signaling proteins are regulated by ADP, and their activation profiles are a function of the ATP-to-ADP ratio. Finally, regeneration of ATP from ADP can serve as an important readout of energy metabolism and mitochondrial function. We, therefore, developed a genetically encoded fluorescent biosensor tuned to sense ATP-to-ADP ratios in the physiological range of healthy mammalian cells. Here, we present a protocol for using this biosensor to visualize energy status using live-cell fluorescence microscopy.</description><subject>Adenosine Diphosphate - analysis</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Triphosphate - analysis</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Biosensing Techniques</subject><subject>Brain - cytology</subject><subject>Brain - metabolism</subject><subject>Calibration</subject><subject>Cells, Cultured</subject><subject>Cytosol - metabolism</subject><subject>Energy Metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Mice</subject><subject>Microscopy, Fluorescence - instrumentation</subject><subject>Microscopy, Fluorescence - methods</subject><issn>0076-6879</issn><issn>1557-7988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1Lw0AYhBdRbK3-BQmevGx9393s10Wo9atQsId6DtvNJo0k2ZpNhf57A36gpznM8MwwhFwhTBFQ3twZpSlQZFQDpiiongIAKiqOyBiFUFQZrY_JGEBJKrUyI3IW4xsAU9rgKRkxkaLkUowJLhpbVm2ZuK1tSx-Tqk36rU_coQ8x1JVLZusV7QOd3a-SzvZVOCcnha2jv_jWCXl9fFjPn-ny5Wkxny3pjqPuqcu5V-AKNkxULN-kPDU812bDrZBiWClsKliRAgfUUIicO-lR8cFB4Y3hE3L7xd3tN43PnW_7ztbZrqsa2x2yYKvsv9NW26wMH1nKGecCBsD1N6AL73sf-6ypovN1bVsf9jFDyZQRgoMaopd_u35Lfn7inyQhaeg</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Tantama, Mathew</creator><creator>Yellen, Gary</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2014</creationdate><title>Imaging changes in the cytosolic ATP-to-ADP ratio</title><author>Tantama, Mathew ; Yellen, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p318t-cd3e70cf201472db43493d89b3a5651555a452f4030180f5d3c6e17315515e993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenosine Diphosphate - analysis</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Triphosphate - analysis</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Biosensing Techniques</topic><topic>Brain - cytology</topic><topic>Brain - metabolism</topic><topic>Calibration</topic><topic>Cells, Cultured</topic><topic>Cytosol - metabolism</topic><topic>Energy Metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Mice</topic><topic>Microscopy, Fluorescence - instrumentation</topic><topic>Microscopy, Fluorescence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tantama, Mathew</creatorcontrib><creatorcontrib>Yellen, Gary</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Methods in enzymology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tantama, Mathew</au><au>Yellen, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging changes in the cytosolic ATP-to-ADP ratio</atitle><jtitle>Methods in enzymology</jtitle><addtitle>Methods Enzymol</addtitle><date>2014</date><risdate>2014</risdate><volume>547</volume><spage>355</spage><epage>371</epage><pages>355-371</pages><issn>0076-6879</issn><eissn>1557-7988</eissn><abstract>Adenosine triphosphate (ATP) is a central metabolite that plays fundamental roles as an energy transfer molecule, a phosphate donor, and a signaling molecule inside the cells. The phosphoryl group transfer potential of ATP provides a thermodynamic driving force for many metabolic reactions, and phosphorylation of both small metabolites and large proteins can serve as a regulatory modification. In the process of phosphoryl transfer from ATP, the diphosphate ADP is produced, and as a result, the ATP-to-ADP ratio is an important physiological control parameter. The ATP-to-ADP ratio is directly proportional to cellular energy charge and phosphorylation potential. Furthermore, several ATP-dependent enzymes and signaling proteins are regulated by ADP, and their activation profiles are a function of the ATP-to-ADP ratio. Finally, regeneration of ATP from ADP can serve as an important readout of energy metabolism and mitochondrial function. We, therefore, developed a genetically encoded fluorescent biosensor tuned to sense ATP-to-ADP ratios in the physiological range of healthy mammalian cells. Here, we present a protocol for using this biosensor to visualize energy status using live-cell fluorescence microscopy.</abstract><cop>United States</cop><pmid>25416365</pmid><doi>10.1016/B978-0-12-801415-8.00017-5</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0076-6879
ispartof Methods in enzymology, 2014, Vol.547, p.355-371
issn 0076-6879
1557-7988
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4323350
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adenosine Diphosphate - analysis
Adenosine Diphosphate - metabolism
Adenosine Triphosphate - analysis
Adenosine Triphosphate - metabolism
Animals
Biosensing Techniques
Brain - cytology
Brain - metabolism
Calibration
Cells, Cultured
Cytosol - metabolism
Energy Metabolism
HEK293 Cells
Humans
Image Processing, Computer-Assisted
Mice
Microscopy, Fluorescence - instrumentation
Microscopy, Fluorescence - methods
title Imaging changes in the cytosolic ATP-to-ADP ratio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20changes%20in%20the%20cytosolic%20ATP-to-ADP%20ratio&rft.jtitle=Methods%20in%20enzymology&rft.au=Tantama,%20Mathew&rft.date=2014&rft.volume=547&rft.spage=355&rft.epage=371&rft.pages=355-371&rft.issn=0076-6879&rft.eissn=1557-7988&rft_id=info:doi/10.1016/B978-0-12-801415-8.00017-5&rft_dat=%3Cproquest_pubme%3E1627955307%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627955307&rft_id=info:pmid/25416365&rfr_iscdi=true