Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models

Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2015-02, Vol.29 (3), p.288-297
Hauptverfasser: Hua, Yimin, Liu, Ying Hsiu, Sahashi, Kentaro, Rigo, Frank, Bennett, C Frank, Krainer, Adrian R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 297
container_issue 3
container_start_page 288
container_title Genes & development
container_volume 29
creator Hua, Yimin
Liu, Ying Hsiu
Sahashi, Kentaro
Rigo, Frank
Bennett, C Frank
Krainer, Adrian R
description Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS) versus peripheral tissues in mouse models using a therapeutic splice-switching antisense oligonucleotide to restore SMN and a complementary decoy oligonucleotide to neutralize its effects in the CNS. Increasing SMN exclusively in peripheral tissues completely rescued necrosis in mild SMA mice and robustly extended survival in severe SMA mice, with significant improvements in vulnerable tissues and motor function. Our data demonstrate a critical role of peripheral pathology in the mortality of SMA mice and indicate that peripheral SMN restoration compensates for its deficiency in the CNS and preserves motor neurons. Thus, SMA is not a cell-autonomous defect of motor neurons in SMA mice.
doi_str_mv 10.1101/gad.256644.114
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4318145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652455421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-3cf263d292f6aa0e2c24a1c66d2808d73b41794426f7e6c3daf618f651128e8d3</originalsourceid><addsrcrecordid>eNqNkb1PHDEQxa0oKBwfbcrIZZo9_L12gxShAJFANEltGXv2bqNde2Pvgu6_j08HiHRpbM3456c38xD6TMmaUkIvNi6smVRKiFqLD2hFpTCNFG37Ea2INqQxXJljdFLKb0KIIkp9QsdMSs05Myv0fJ_mlHGEJaeIPQxDE1N0y5xiGtNScIbiF8Cpw2XqoxvwuNTG4DJ2c07TdoenLcQ07yYouI947IeAXQy4wBNkwHN2sWwg9h7v9aCeAYZyho46NxQ4f7lP0a_r7z-vbpu7h5sfV9_uGi-0mRvuO6Z4YIZ1yjkCzDPhqFcqME10aPmjoK0RgqmuBeV5cJ2iulOSUqZBB36KLg-60_I4QvAQq6HBTrkfXd7Z5Hr770vst3aTnqzgVFMhq8DXF4Gc_ixQZjv2Zb8nF6HOY6lqFRem0v-BSiakFIxWdH1AfU6lZOjeHFFi98HaGqw9BFtrUT98eT_HG_6aJP8LpnSiIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652455421</pqid></control><display><type>article</type><title>Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hua, Yimin ; Liu, Ying Hsiu ; Sahashi, Kentaro ; Rigo, Frank ; Bennett, C Frank ; Krainer, Adrian R</creator><creatorcontrib>Hua, Yimin ; Liu, Ying Hsiu ; Sahashi, Kentaro ; Rigo, Frank ; Bennett, C Frank ; Krainer, Adrian R</creatorcontrib><description>Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS) versus peripheral tissues in mouse models using a therapeutic splice-switching antisense oligonucleotide to restore SMN and a complementary decoy oligonucleotide to neutralize its effects in the CNS. Increasing SMN exclusively in peripheral tissues completely rescued necrosis in mild SMA mice and robustly extended survival in severe SMA mice, with significant improvements in vulnerable tissues and motor function. Our data demonstrate a critical role of peripheral pathology in the mortality of SMA mice and indicate that peripheral SMN restoration compensates for its deficiency in the CNS and preserves motor neurons. Thus, SMA is not a cell-autonomous defect of motor neurons in SMA mice.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.256644.114</identifier><identifier>PMID: 25583329</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; Central Nervous System - cytology ; Central Nervous System - metabolism ; Disease Models, Animal ; Genetic Therapy ; Mice ; Mice, Transgenic ; Motor Neurons - cytology ; Motor Neurons - metabolism ; Muscular Atrophy, Spinal - genetics ; Muscular Atrophy, Spinal - physiopathology ; Muscular Atrophy, Spinal - therapy ; Oligonucleotides, Antisense - genetics ; Oligonucleotides, Antisense - metabolism ; Oligonucleotides, Antisense - therapeutic use ; Phenotype ; Research Paper ; SMN Complex Proteins - genetics ; SMN Complex Proteins - metabolism</subject><ispartof>Genes &amp; development, 2015-02, Vol.29 (3), p.288-297</ispartof><rights>2015 Hua et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-3cf263d292f6aa0e2c24a1c66d2808d73b41794426f7e6c3daf618f651128e8d3</citedby><cites>FETCH-LOGICAL-c489t-3cf263d292f6aa0e2c24a1c66d2808d73b41794426f7e6c3daf618f651128e8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318145/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318145/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25583329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hua, Yimin</creatorcontrib><creatorcontrib>Liu, Ying Hsiu</creatorcontrib><creatorcontrib>Sahashi, Kentaro</creatorcontrib><creatorcontrib>Rigo, Frank</creatorcontrib><creatorcontrib>Bennett, C Frank</creatorcontrib><creatorcontrib>Krainer, Adrian R</creatorcontrib><title>Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models</title><title>Genes &amp; development</title><addtitle>Genes Dev</addtitle><description>Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS) versus peripheral tissues in mouse models using a therapeutic splice-switching antisense oligonucleotide to restore SMN and a complementary decoy oligonucleotide to neutralize its effects in the CNS. Increasing SMN exclusively in peripheral tissues completely rescued necrosis in mild SMA mice and robustly extended survival in severe SMA mice, with significant improvements in vulnerable tissues and motor function. Our data demonstrate a critical role of peripheral pathology in the mortality of SMA mice and indicate that peripheral SMN restoration compensates for its deficiency in the CNS and preserves motor neurons. Thus, SMA is not a cell-autonomous defect of motor neurons in SMA mice.</description><subject>Animals</subject><subject>Central Nervous System - cytology</subject><subject>Central Nervous System - metabolism</subject><subject>Disease Models, Animal</subject><subject>Genetic Therapy</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Motor Neurons - cytology</subject><subject>Motor Neurons - metabolism</subject><subject>Muscular Atrophy, Spinal - genetics</subject><subject>Muscular Atrophy, Spinal - physiopathology</subject><subject>Muscular Atrophy, Spinal - therapy</subject><subject>Oligonucleotides, Antisense - genetics</subject><subject>Oligonucleotides, Antisense - metabolism</subject><subject>Oligonucleotides, Antisense - therapeutic use</subject><subject>Phenotype</subject><subject>Research Paper</subject><subject>SMN Complex Proteins - genetics</subject><subject>SMN Complex Proteins - metabolism</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkb1PHDEQxa0oKBwfbcrIZZo9_L12gxShAJFANEltGXv2bqNde2Pvgu6_j08HiHRpbM3456c38xD6TMmaUkIvNi6smVRKiFqLD2hFpTCNFG37Ea2INqQxXJljdFLKb0KIIkp9QsdMSs05Myv0fJ_mlHGEJaeIPQxDE1N0y5xiGtNScIbiF8Cpw2XqoxvwuNTG4DJ2c07TdoenLcQ07yYouI947IeAXQy4wBNkwHN2sWwg9h7v9aCeAYZyho46NxQ4f7lP0a_r7z-vbpu7h5sfV9_uGi-0mRvuO6Z4YIZ1yjkCzDPhqFcqME10aPmjoK0RgqmuBeV5cJ2iulOSUqZBB36KLg-60_I4QvAQq6HBTrkfXd7Z5Hr770vst3aTnqzgVFMhq8DXF4Gc_ixQZjv2Zb8nF6HOY6lqFRem0v-BSiakFIxWdH1AfU6lZOjeHFFi98HaGqw9BFtrUT98eT_HG_6aJP8LpnSiIw</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Hua, Yimin</creator><creator>Liu, Ying Hsiu</creator><creator>Sahashi, Kentaro</creator><creator>Rigo, Frank</creator><creator>Bennett, C Frank</creator><creator>Krainer, Adrian R</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150201</creationdate><title>Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models</title><author>Hua, Yimin ; Liu, Ying Hsiu ; Sahashi, Kentaro ; Rigo, Frank ; Bennett, C Frank ; Krainer, Adrian R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-3cf263d292f6aa0e2c24a1c66d2808d73b41794426f7e6c3daf618f651128e8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Central Nervous System - cytology</topic><topic>Central Nervous System - metabolism</topic><topic>Disease Models, Animal</topic><topic>Genetic Therapy</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Motor Neurons - cytology</topic><topic>Motor Neurons - metabolism</topic><topic>Muscular Atrophy, Spinal - genetics</topic><topic>Muscular Atrophy, Spinal - physiopathology</topic><topic>Muscular Atrophy, Spinal - therapy</topic><topic>Oligonucleotides, Antisense - genetics</topic><topic>Oligonucleotides, Antisense - metabolism</topic><topic>Oligonucleotides, Antisense - therapeutic use</topic><topic>Phenotype</topic><topic>Research Paper</topic><topic>SMN Complex Proteins - genetics</topic><topic>SMN Complex Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Yimin</creatorcontrib><creatorcontrib>Liu, Ying Hsiu</creatorcontrib><creatorcontrib>Sahashi, Kentaro</creatorcontrib><creatorcontrib>Rigo, Frank</creatorcontrib><creatorcontrib>Bennett, C Frank</creatorcontrib><creatorcontrib>Krainer, Adrian R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Yimin</au><au>Liu, Ying Hsiu</au><au>Sahashi, Kentaro</au><au>Rigo, Frank</au><au>Bennett, C Frank</au><au>Krainer, Adrian R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models</atitle><jtitle>Genes &amp; development</jtitle><addtitle>Genes Dev</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>29</volume><issue>3</issue><spage>288</spage><epage>297</epage><pages>288-297</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS) versus peripheral tissues in mouse models using a therapeutic splice-switching antisense oligonucleotide to restore SMN and a complementary decoy oligonucleotide to neutralize its effects in the CNS. Increasing SMN exclusively in peripheral tissues completely rescued necrosis in mild SMA mice and robustly extended survival in severe SMA mice, with significant improvements in vulnerable tissues and motor function. Our data demonstrate a critical role of peripheral pathology in the mortality of SMA mice and indicate that peripheral SMN restoration compensates for its deficiency in the CNS and preserves motor neurons. Thus, SMA is not a cell-autonomous defect of motor neurons in SMA mice.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>25583329</pmid><doi>10.1101/gad.256644.114</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-9369
ispartof Genes & development, 2015-02, Vol.29 (3), p.288-297
issn 0890-9369
1549-5477
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4318145
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Central Nervous System - cytology
Central Nervous System - metabolism
Disease Models, Animal
Genetic Therapy
Mice
Mice, Transgenic
Motor Neurons - cytology
Motor Neurons - metabolism
Muscular Atrophy, Spinal - genetics
Muscular Atrophy, Spinal - physiopathology
Muscular Atrophy, Spinal - therapy
Oligonucleotides, Antisense - genetics
Oligonucleotides, Antisense - metabolism
Oligonucleotides, Antisense - therapeutic use
Phenotype
Research Paper
SMN Complex Proteins - genetics
SMN Complex Proteins - metabolism
title Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motor%20neuron%20cell-nonautonomous%20rescue%20of%20spinal%20muscular%20atrophy%20phenotypes%20in%20mild%20and%20severe%20transgenic%20mouse%20models&rft.jtitle=Genes%20&%20development&rft.au=Hua,%20Yimin&rft.date=2015-02-01&rft.volume=29&rft.issue=3&rft.spage=288&rft.epage=297&rft.pages=288-297&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.256644.114&rft_dat=%3Cproquest_pubme%3E1652455421%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652455421&rft_id=info:pmid/25583329&rfr_iscdi=true