A Cautionary Note About Estimating Effects of Secondary Exposures in Cohort Studies

Cohort studies are often enriched for a primary exposure of interest to improve cost-effectiveness, which presents analytical challenges not commonly discussed in epidemiology. In this paper, we use causal diagrams to represent exposure-enriched cohort studies, illustrate a scenario wherein the risk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of epidemiology 2015-02, Vol.181 (3), p.198-203
Hauptverfasser: Ahrens, K. A., Cole, S. R., Westreich, D., Platt, R. W., Schisterman, E. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue 3
container_start_page 198
container_title American journal of epidemiology
container_volume 181
creator Ahrens, K. A.
Cole, S. R.
Westreich, D.
Platt, R. W.
Schisterman, E. F.
description Cohort studies are often enriched for a primary exposure of interest to improve cost-effectiveness, which presents analytical challenges not commonly discussed in epidemiology. In this paper, we use causal diagrams to represent exposure-enriched cohort studies, illustrate a scenario wherein the risk ratio for the effect of a secondary exposure on an outcome is biased, and propose an analytical method for correcting for such bias. In our motivating example, maternal smoking (Z) is a cause of fetal growth restriction (X), which subsequently affects preterm birth (Y) (i.e., Z → X → Y); strong positive associations exist between both Z, X and X, Y; and enrichment for X increases its prevalence from 10% to 50%. In the X-enriched cohort, unadjusted and X-adjusted analyses lead to bias in the risk ratio for the total effect of Z on Y. After application of inverse probability weights, the bias is corrected, with a small loss of efficiency in comparison with a same-sized study without X-enrichment. With increasing interest in conducting secondary analyses to reduce research costs, caution should be employed when analyzing studies that have already been enriched, intentionally or unintentionally, for a primary exposure of interest. Causal diagrams can help identify scenarios in which secondary analyses may be biased. Inverse probability weights can be used to remove the bias.
doi_str_mv 10.1093/aje/kwu276
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4312425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/aje/kwu276</oup_id><sourcerecordid>1652446301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-139d5aa4ed6c5ff244c6310b4e58221fca20f03eabaab9c623516b647b585ace3</originalsourceid><addsrcrecordid>eNp90UtrGzEUBWARGmLX7aY_oAhCIAQm0Xs8m4AxblIw6cLtWmg0V8k49sjRI49_3zF2Q5JFV1rcj8MRB6FvlJxTUvELs4SL-6fMSnWAhlSUqlBMqk9oSAhhRcUUG6DPMS4JobSS5AgNmJTjigk-RIsJnpqcWt-Z8IJvfAI8qX1OeBZTuzap7W7xzDmwKWLv8AKs75otnT1vfMwBIm47PPV3PiS8SLlpIX5Bh86sInzdvyP058fs9_S6mP-6-jmdzAsruEoF5VUjjRHQKCudY0JYxSmpBcgxY9RZw4gjHExtTF1ZxbikqlairOVYGgt8hC53uZtcr6Gx0KVgVnoT-uLhRXvT6veXrr3Tt_5RC06ZYLIPON0HBP-QISa9bqOF1cp04HPUVMm-leKE9vT4A136HLr-e1slSsJLtlVnO2WDjzGAey1Did5upfut9G6rHn9_W_-V_hunByc74PPmf0F_Ab-zncI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654703721</pqid></control><display><type>article</type><title>A Cautionary Note About Estimating Effects of Secondary Exposures in Cohort Studies</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Ahrens, K. A. ; Cole, S. R. ; Westreich, D. ; Platt, R. W. ; Schisterman, E. F.</creator><creatorcontrib>Ahrens, K. A. ; Cole, S. R. ; Westreich, D. ; Platt, R. W. ; Schisterman, E. F.</creatorcontrib><description>Cohort studies are often enriched for a primary exposure of interest to improve cost-effectiveness, which presents analytical challenges not commonly discussed in epidemiology. In this paper, we use causal diagrams to represent exposure-enriched cohort studies, illustrate a scenario wherein the risk ratio for the effect of a secondary exposure on an outcome is biased, and propose an analytical method for correcting for such bias. In our motivating example, maternal smoking (Z) is a cause of fetal growth restriction (X), which subsequently affects preterm birth (Y) (i.e., Z → X → Y); strong positive associations exist between both Z, X and X, Y; and enrichment for X increases its prevalence from 10% to 50%. In the X-enriched cohort, unadjusted and X-adjusted analyses lead to bias in the risk ratio for the total effect of Z on Y. After application of inverse probability weights, the bias is corrected, with a small loss of efficiency in comparison with a same-sized study without X-enrichment. With increasing interest in conducting secondary analyses to reduce research costs, caution should be employed when analyzing studies that have already been enriched, intentionally or unintentionally, for a primary exposure of interest. Causal diagrams can help identify scenarios in which secondary analyses may be biased. Inverse probability weights can be used to remove the bias.</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/aje/kwu276</identifier><identifier>PMID: 25589243</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Clinical outcomes ; Cohort Studies ; Cost analysis ; Diagrams ; Epidemiology ; Estimation bias ; Female ; Fetal Growth Retardation - etiology ; Health risk assessment ; Human exposure ; Humans ; Practice of Epidemiology ; Pregnancy ; Premature Birth - etiology ; Smoking - adverse effects ; Statistics as Topic</subject><ispartof>American journal of epidemiology, 2015-02, Vol.181 (3), p.198-203</ispartof><rights>The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2014</rights><rights>The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>Copyright Oxford Publishing Limited(England) Feb 1, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-139d5aa4ed6c5ff244c6310b4e58221fca20f03eabaab9c623516b647b585ace3</citedby><cites>FETCH-LOGICAL-c436t-139d5aa4ed6c5ff244c6310b4e58221fca20f03eabaab9c623516b647b585ace3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,1585,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25589243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahrens, K. A.</creatorcontrib><creatorcontrib>Cole, S. R.</creatorcontrib><creatorcontrib>Westreich, D.</creatorcontrib><creatorcontrib>Platt, R. W.</creatorcontrib><creatorcontrib>Schisterman, E. F.</creatorcontrib><title>A Cautionary Note About Estimating Effects of Secondary Exposures in Cohort Studies</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>Cohort studies are often enriched for a primary exposure of interest to improve cost-effectiveness, which presents analytical challenges not commonly discussed in epidemiology. In this paper, we use causal diagrams to represent exposure-enriched cohort studies, illustrate a scenario wherein the risk ratio for the effect of a secondary exposure on an outcome is biased, and propose an analytical method for correcting for such bias. In our motivating example, maternal smoking (Z) is a cause of fetal growth restriction (X), which subsequently affects preterm birth (Y) (i.e., Z → X → Y); strong positive associations exist between both Z, X and X, Y; and enrichment for X increases its prevalence from 10% to 50%. In the X-enriched cohort, unadjusted and X-adjusted analyses lead to bias in the risk ratio for the total effect of Z on Y. After application of inverse probability weights, the bias is corrected, with a small loss of efficiency in comparison with a same-sized study without X-enrichment. With increasing interest in conducting secondary analyses to reduce research costs, caution should be employed when analyzing studies that have already been enriched, intentionally or unintentionally, for a primary exposure of interest. Causal diagrams can help identify scenarios in which secondary analyses may be biased. Inverse probability weights can be used to remove the bias.</description><subject>Clinical outcomes</subject><subject>Cohort Studies</subject><subject>Cost analysis</subject><subject>Diagrams</subject><subject>Epidemiology</subject><subject>Estimation bias</subject><subject>Female</subject><subject>Fetal Growth Retardation - etiology</subject><subject>Health risk assessment</subject><subject>Human exposure</subject><subject>Humans</subject><subject>Practice of Epidemiology</subject><subject>Pregnancy</subject><subject>Premature Birth - etiology</subject><subject>Smoking - adverse effects</subject><subject>Statistics as Topic</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90UtrGzEUBWARGmLX7aY_oAhCIAQm0Xs8m4AxblIw6cLtWmg0V8k49sjRI49_3zF2Q5JFV1rcj8MRB6FvlJxTUvELs4SL-6fMSnWAhlSUqlBMqk9oSAhhRcUUG6DPMS4JobSS5AgNmJTjigk-RIsJnpqcWt-Z8IJvfAI8qX1OeBZTuzap7W7xzDmwKWLv8AKs75otnT1vfMwBIm47PPV3PiS8SLlpIX5Bh86sInzdvyP058fs9_S6mP-6-jmdzAsruEoF5VUjjRHQKCudY0JYxSmpBcgxY9RZw4gjHExtTF1ZxbikqlairOVYGgt8hC53uZtcr6Gx0KVgVnoT-uLhRXvT6veXrr3Tt_5RC06ZYLIPON0HBP-QISa9bqOF1cp04HPUVMm-leKE9vT4A136HLr-e1slSsJLtlVnO2WDjzGAey1Did5upfut9G6rHn9_W_-V_hunByc74PPmf0F_Ab-zncI</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Ahrens, K. A.</creator><creator>Cole, S. R.</creator><creator>Westreich, D.</creator><creator>Platt, R. W.</creator><creator>Schisterman, E. F.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150201</creationdate><title>A Cautionary Note About Estimating Effects of Secondary Exposures in Cohort Studies</title><author>Ahrens, K. A. ; Cole, S. R. ; Westreich, D. ; Platt, R. W. ; Schisterman, E. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-139d5aa4ed6c5ff244c6310b4e58221fca20f03eabaab9c623516b647b585ace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Clinical outcomes</topic><topic>Cohort Studies</topic><topic>Cost analysis</topic><topic>Diagrams</topic><topic>Epidemiology</topic><topic>Estimation bias</topic><topic>Female</topic><topic>Fetal Growth Retardation - etiology</topic><topic>Health risk assessment</topic><topic>Human exposure</topic><topic>Humans</topic><topic>Practice of Epidemiology</topic><topic>Pregnancy</topic><topic>Premature Birth - etiology</topic><topic>Smoking - adverse effects</topic><topic>Statistics as Topic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahrens, K. A.</creatorcontrib><creatorcontrib>Cole, S. R.</creatorcontrib><creatorcontrib>Westreich, D.</creatorcontrib><creatorcontrib>Platt, R. W.</creatorcontrib><creatorcontrib>Schisterman, E. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahrens, K. A.</au><au>Cole, S. R.</au><au>Westreich, D.</au><au>Platt, R. W.</au><au>Schisterman, E. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cautionary Note About Estimating Effects of Secondary Exposures in Cohort Studies</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>181</volume><issue>3</issue><spage>198</spage><epage>203</epage><pages>198-203</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><abstract>Cohort studies are often enriched for a primary exposure of interest to improve cost-effectiveness, which presents analytical challenges not commonly discussed in epidemiology. In this paper, we use causal diagrams to represent exposure-enriched cohort studies, illustrate a scenario wherein the risk ratio for the effect of a secondary exposure on an outcome is biased, and propose an analytical method for correcting for such bias. In our motivating example, maternal smoking (Z) is a cause of fetal growth restriction (X), which subsequently affects preterm birth (Y) (i.e., Z → X → Y); strong positive associations exist between both Z, X and X, Y; and enrichment for X increases its prevalence from 10% to 50%. In the X-enriched cohort, unadjusted and X-adjusted analyses lead to bias in the risk ratio for the total effect of Z on Y. After application of inverse probability weights, the bias is corrected, with a small loss of efficiency in comparison with a same-sized study without X-enrichment. With increasing interest in conducting secondary analyses to reduce research costs, caution should be employed when analyzing studies that have already been enriched, intentionally or unintentionally, for a primary exposure of interest. Causal diagrams can help identify scenarios in which secondary analyses may be biased. Inverse probability weights can be used to remove the bias.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>25589243</pmid><doi>10.1093/aje/kwu276</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9262
ispartof American journal of epidemiology, 2015-02, Vol.181 (3), p.198-203
issn 0002-9262
1476-6256
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4312425
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Clinical outcomes
Cohort Studies
Cost analysis
Diagrams
Epidemiology
Estimation bias
Female
Fetal Growth Retardation - etiology
Health risk assessment
Human exposure
Humans
Practice of Epidemiology
Pregnancy
Premature Birth - etiology
Smoking - adverse effects
Statistics as Topic
title A Cautionary Note About Estimating Effects of Secondary Exposures in Cohort Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cautionary%20Note%20About%20Estimating%20Effects%20of%20Secondary%20Exposures%20in%20Cohort%20Studies&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=Ahrens,%20K.%20A.&rft.date=2015-02-01&rft.volume=181&rft.issue=3&rft.spage=198&rft.epage=203&rft.pages=198-203&rft.issn=0002-9262&rft.eissn=1476-6256&rft_id=info:doi/10.1093/aje/kwu276&rft_dat=%3Cproquest_pubme%3E1652446301%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654703721&rft_id=info:pmid/25589243&rft_oup_id=10.1093/aje/kwu276&rfr_iscdi=true