Transcriptomic analysis of xylan utilization systems in Paenibacillus sp. strain JDR-2

Xylans, including methylglucuronoxylans (MeGX(n)) and methylglucuronoarabinoxylans (MeGAXn), are the predominant polysaccharidesin hemicellulose fractions of dicots and monocots available for conversion to biofuels and chemicals. Paenibacillus sp. strain JDR-2 (Pjdr2) efficiently depolymerizes MeGX(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2015-02, Vol.81 (4), p.1490-1501
Hauptverfasser: Sawhney, Neha, Crooks, Casey, St John, Franz, Preston, James F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1501
container_issue 4
container_start_page 1490
container_title Applied and Environmental Microbiology
container_volume 81
creator Sawhney, Neha
Crooks, Casey
St John, Franz
Preston, James F
description Xylans, including methylglucuronoxylans (MeGX(n)) and methylglucuronoarabinoxylans (MeGAXn), are the predominant polysaccharidesin hemicellulose fractions of dicots and monocots available for conversion to biofuels and chemicals. Paenibacillus sp. strain JDR-2 (Pjdr2) efficiently depolymerizes MeGX(n) and MeGAX(n) and assimilates the generated oligosaccharides, resulting in efficient saccharification and subsequent metabolism of these polysaccharides. A xylan utilization regulon encoding a cellassociated GH10 (glycoside hydrolase family 10) endoxylanase, transcriptional regulators, ABC (ATP binding cassette) transporters, an intracellular GH67 -glucuronidase, and other glycoside hydrolases contributes to complete metabolism. This GH10/GH67 system has been proposed to account for preferential utilization of xylans compared to free oligo- and monosaccharides. To identify additional genes contributing to MeGX(n) and MeGAXn utilization, the transcriptome of Pjdr2 has been sequenced following growth on each of these substrates as well as xylose and arabinose. Increased expression of genes with different substrates identified pathways common or unique to the utilization of MeGX(n) or MeGAX(n). Coordinate upregulation of genes comprising the GH10/GH67 xylan utilization regulon is accompanied with upregulation of genes encoding a GH11 endoxylanase and a GH115 -glucuronidase, providing evidence for a novel complementary pathway for processing xylans. Elevated expression of genes encoding a GH43 arabinoxylan arabinofuranohydrolase and an arabinose ABC transporter on MeGAX(n) but not on MeGX(n) supports a process in which arabinose may be removed extracellularly followed by its rapid assimilation.Further development of Pjdr2 for direct conversion of xylans to targeted products or introduction of these systems into fermentative strains of related bacteria may lead to biocatalysts for consolidated bioprocessing of hemicelluloses released from lignocellulose.
doi_str_mv 10.1128/AEM.03523-14
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4309694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1687335432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-35f9b3a271f1aa8fae274cf64bcc58ffb79db4530b99bfa84a1a06897f8d083b3</originalsourceid><addsrcrecordid>eNqNkb1vFDEUxK0IlByBjhpZoqFgD3_u2g1SFJIACgKhkNZ69tngaHd9sXejHH99fPkSUFG9Yn4azbxB6CUlS0qZendw9GVJuGS8oWIHLSjRqpGct0_QghCtG8YE2UPPSrkghAjSql20x6RknZRygc7PMozF5bie0hAdhhH6TYkFp4CvNz2MeJ5iH3_DFNOIy6ZMfig4jvgb-DFacLHv54LLeonLlKEKnz98b9hz9DRAX_yL-7uPfhwfnR1-bE6_nnw6PDhtnBByargM2nJgHQ0UQAXwrBMutMI6J1UIttMrKyQnVmsbQAmgUBvoLqgVUdzyffT-znc928GvnB9riN6scxwgb0yCaP5WxvjL_ExXRnCiWy2qwZt7g5wuZ18mM8TifF-b-zQXQ1vVcS4FZ_-BtkQI2rW6oq__QS_SnOtrt5SkhLGO00q9vaNcTqVkHx5zU2K225q6rbnd1tBt1Fd_dn2EH8bkN0EFn8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651022731</pqid></control><display><type>article</type><title>Transcriptomic analysis of xylan utilization systems in Paenibacillus sp. strain JDR-2</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sawhney, Neha ; Crooks, Casey ; St John, Franz ; Preston, James F</creator><creatorcontrib>Sawhney, Neha ; Crooks, Casey ; St John, Franz ; Preston, James F</creatorcontrib><description>Xylans, including methylglucuronoxylans (MeGX(n)) and methylglucuronoarabinoxylans (MeGAXn), are the predominant polysaccharidesin hemicellulose fractions of dicots and monocots available for conversion to biofuels and chemicals. Paenibacillus sp. strain JDR-2 (Pjdr2) efficiently depolymerizes MeGX(n) and MeGAX(n) and assimilates the generated oligosaccharides, resulting in efficient saccharification and subsequent metabolism of these polysaccharides. A xylan utilization regulon encoding a cellassociated GH10 (glycoside hydrolase family 10) endoxylanase, transcriptional regulators, ABC (ATP binding cassette) transporters, an intracellular GH67 -glucuronidase, and other glycoside hydrolases contributes to complete metabolism. This GH10/GH67 system has been proposed to account for preferential utilization of xylans compared to free oligo- and monosaccharides. To identify additional genes contributing to MeGX(n) and MeGAXn utilization, the transcriptome of Pjdr2 has been sequenced following growth on each of these substrates as well as xylose and arabinose. Increased expression of genes with different substrates identified pathways common or unique to the utilization of MeGX(n) or MeGAX(n). Coordinate upregulation of genes comprising the GH10/GH67 xylan utilization regulon is accompanied with upregulation of genes encoding a GH11 endoxylanase and a GH115 -glucuronidase, providing evidence for a novel complementary pathway for processing xylans. Elevated expression of genes encoding a GH43 arabinoxylan arabinofuranohydrolase and an arabinose ABC transporter on MeGAX(n) but not on MeGX(n) supports a process in which arabinose may be removed extracellularly followed by its rapid assimilation.Further development of Pjdr2 for direct conversion of xylans to targeted products or introduction of these systems into fermentative strains of related bacteria may lead to biocatalysts for consolidated bioprocessing of hemicelluloses released from lignocellulose.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.03523-14</identifier><identifier>PMID: 25527555</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biotechnology ; Endo-1,4-beta Xylanases - genetics ; Endo-1,4-beta Xylanases - metabolism ; Enzymes ; Gene Expression Regulation, Bacterial ; Genes ; Glucuronidase - genetics ; Glucuronidase - metabolism ; Glycoside Hydrolases - genetics ; Glycoside Hydrolases - metabolism ; Paenibacillus ; Paenibacillus - enzymology ; Paenibacillus - genetics ; Paenibacillus - metabolism ; Polymers ; Substrates ; Transcription factors ; Transcriptome ; Xylans - metabolism</subject><ispartof>Applied and Environmental Microbiology, 2015-02, Vol.81 (4), p.1490-1501</ispartof><rights>Copyright American Society for Microbiology Feb 2015</rights><rights>Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-35f9b3a271f1aa8fae274cf64bcc58ffb79db4530b99bfa84a1a06897f8d083b3</citedby><cites>FETCH-LOGICAL-c445t-35f9b3a271f1aa8fae274cf64bcc58ffb79db4530b99bfa84a1a06897f8d083b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309694/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309694/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25527555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sawhney, Neha</creatorcontrib><creatorcontrib>Crooks, Casey</creatorcontrib><creatorcontrib>St John, Franz</creatorcontrib><creatorcontrib>Preston, James F</creatorcontrib><title>Transcriptomic analysis of xylan utilization systems in Paenibacillus sp. strain JDR-2</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Xylans, including methylglucuronoxylans (MeGX(n)) and methylglucuronoarabinoxylans (MeGAXn), are the predominant polysaccharidesin hemicellulose fractions of dicots and monocots available for conversion to biofuels and chemicals. Paenibacillus sp. strain JDR-2 (Pjdr2) efficiently depolymerizes MeGX(n) and MeGAX(n) and assimilates the generated oligosaccharides, resulting in efficient saccharification and subsequent metabolism of these polysaccharides. A xylan utilization regulon encoding a cellassociated GH10 (glycoside hydrolase family 10) endoxylanase, transcriptional regulators, ABC (ATP binding cassette) transporters, an intracellular GH67 -glucuronidase, and other glycoside hydrolases contributes to complete metabolism. This GH10/GH67 system has been proposed to account for preferential utilization of xylans compared to free oligo- and monosaccharides. To identify additional genes contributing to MeGX(n) and MeGAXn utilization, the transcriptome of Pjdr2 has been sequenced following growth on each of these substrates as well as xylose and arabinose. Increased expression of genes with different substrates identified pathways common or unique to the utilization of MeGX(n) or MeGAX(n). Coordinate upregulation of genes comprising the GH10/GH67 xylan utilization regulon is accompanied with upregulation of genes encoding a GH11 endoxylanase and a GH115 -glucuronidase, providing evidence for a novel complementary pathway for processing xylans. Elevated expression of genes encoding a GH43 arabinoxylan arabinofuranohydrolase and an arabinose ABC transporter on MeGAX(n) but not on MeGX(n) supports a process in which arabinose may be removed extracellularly followed by its rapid assimilation.Further development of Pjdr2 for direct conversion of xylans to targeted products or introduction of these systems into fermentative strains of related bacteria may lead to biocatalysts for consolidated bioprocessing of hemicelluloses released from lignocellulose.</description><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biotechnology</subject><subject>Endo-1,4-beta Xylanases - genetics</subject><subject>Endo-1,4-beta Xylanases - metabolism</subject><subject>Enzymes</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Glucuronidase - genetics</subject><subject>Glucuronidase - metabolism</subject><subject>Glycoside Hydrolases - genetics</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Paenibacillus</subject><subject>Paenibacillus - enzymology</subject><subject>Paenibacillus - genetics</subject><subject>Paenibacillus - metabolism</subject><subject>Polymers</subject><subject>Substrates</subject><subject>Transcription factors</subject><subject>Transcriptome</subject><subject>Xylans - metabolism</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkb1vFDEUxK0IlByBjhpZoqFgD3_u2g1SFJIACgKhkNZ69tngaHd9sXejHH99fPkSUFG9Yn4azbxB6CUlS0qZendw9GVJuGS8oWIHLSjRqpGct0_QghCtG8YE2UPPSrkghAjSql20x6RknZRygc7PMozF5bie0hAdhhH6TYkFp4CvNz2MeJ5iH3_DFNOIy6ZMfig4jvgb-DFacLHv54LLeonLlKEKnz98b9hz9DRAX_yL-7uPfhwfnR1-bE6_nnw6PDhtnBByargM2nJgHQ0UQAXwrBMutMI6J1UIttMrKyQnVmsbQAmgUBvoLqgVUdzyffT-znc928GvnB9riN6scxwgb0yCaP5WxvjL_ExXRnCiWy2qwZt7g5wuZ18mM8TifF-b-zQXQ1vVcS4FZ_-BtkQI2rW6oq__QS_SnOtrt5SkhLGO00q9vaNcTqVkHx5zU2K225q6rbnd1tBt1Fd_dn2EH8bkN0EFn8A</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Sawhney, Neha</creator><creator>Crooks, Casey</creator><creator>St John, Franz</creator><creator>Preston, James F</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150201</creationdate><title>Transcriptomic analysis of xylan utilization systems in Paenibacillus sp. strain JDR-2</title><author>Sawhney, Neha ; Crooks, Casey ; St John, Franz ; Preston, James F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-35f9b3a271f1aa8fae274cf64bcc58ffb79db4530b99bfa84a1a06897f8d083b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biotechnology</topic><topic>Endo-1,4-beta Xylanases - genetics</topic><topic>Endo-1,4-beta Xylanases - metabolism</topic><topic>Enzymes</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Glucuronidase - genetics</topic><topic>Glucuronidase - metabolism</topic><topic>Glycoside Hydrolases - genetics</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Paenibacillus</topic><topic>Paenibacillus - enzymology</topic><topic>Paenibacillus - genetics</topic><topic>Paenibacillus - metabolism</topic><topic>Polymers</topic><topic>Substrates</topic><topic>Transcription factors</topic><topic>Transcriptome</topic><topic>Xylans - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sawhney, Neha</creatorcontrib><creatorcontrib>Crooks, Casey</creatorcontrib><creatorcontrib>St John, Franz</creatorcontrib><creatorcontrib>Preston, James F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sawhney, Neha</au><au>Crooks, Casey</au><au>St John, Franz</au><au>Preston, James F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptomic analysis of xylan utilization systems in Paenibacillus sp. strain JDR-2</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>81</volume><issue>4</issue><spage>1490</spage><epage>1501</epage><pages>1490-1501</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>Xylans, including methylglucuronoxylans (MeGX(n)) and methylglucuronoarabinoxylans (MeGAXn), are the predominant polysaccharidesin hemicellulose fractions of dicots and monocots available for conversion to biofuels and chemicals. Paenibacillus sp. strain JDR-2 (Pjdr2) efficiently depolymerizes MeGX(n) and MeGAX(n) and assimilates the generated oligosaccharides, resulting in efficient saccharification and subsequent metabolism of these polysaccharides. A xylan utilization regulon encoding a cellassociated GH10 (glycoside hydrolase family 10) endoxylanase, transcriptional regulators, ABC (ATP binding cassette) transporters, an intracellular GH67 -glucuronidase, and other glycoside hydrolases contributes to complete metabolism. This GH10/GH67 system has been proposed to account for preferential utilization of xylans compared to free oligo- and monosaccharides. To identify additional genes contributing to MeGX(n) and MeGAXn utilization, the transcriptome of Pjdr2 has been sequenced following growth on each of these substrates as well as xylose and arabinose. Increased expression of genes with different substrates identified pathways common or unique to the utilization of MeGX(n) or MeGAX(n). Coordinate upregulation of genes comprising the GH10/GH67 xylan utilization regulon is accompanied with upregulation of genes encoding a GH11 endoxylanase and a GH115 -glucuronidase, providing evidence for a novel complementary pathway for processing xylans. Elevated expression of genes encoding a GH43 arabinoxylan arabinofuranohydrolase and an arabinose ABC transporter on MeGAX(n) but not on MeGX(n) supports a process in which arabinose may be removed extracellularly followed by its rapid assimilation.Further development of Pjdr2 for direct conversion of xylans to targeted products or introduction of these systems into fermentative strains of related bacteria may lead to biocatalysts for consolidated bioprocessing of hemicelluloses released from lignocellulose.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>25527555</pmid><doi>10.1128/AEM.03523-14</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2015-02, Vol.81 (4), p.1490-1501
issn 0099-2240
1098-5336
1098-6596
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4309694
source American Society for Microbiology; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biotechnology
Endo-1,4-beta Xylanases - genetics
Endo-1,4-beta Xylanases - metabolism
Enzymes
Gene Expression Regulation, Bacterial
Genes
Glucuronidase - genetics
Glucuronidase - metabolism
Glycoside Hydrolases - genetics
Glycoside Hydrolases - metabolism
Paenibacillus
Paenibacillus - enzymology
Paenibacillus - genetics
Paenibacillus - metabolism
Polymers
Substrates
Transcription factors
Transcriptome
Xylans - metabolism
title Transcriptomic analysis of xylan utilization systems in Paenibacillus sp. strain JDR-2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptomic%20analysis%20of%20xylan%20utilization%20systems%20in%20Paenibacillus%20sp.%20strain%20JDR-2&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Sawhney,%20Neha&rft.date=2015-02-01&rft.volume=81&rft.issue=4&rft.spage=1490&rft.epage=1501&rft.pages=1490-1501&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.03523-14&rft_dat=%3Cproquest_pubme%3E1687335432%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651022731&rft_id=info:pmid/25527555&rfr_iscdi=true