In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation

Glycoconjugated vaccines composed of polysaccharide antigens covalently linked to immunogenic carrier proteins have proved to belong to the most effective and safest vaccines for combating bacterial pathogens. The functional transfer of the N-glycosylation machinery from Campylobacter jejuni to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial cell factories 2015-01, Vol.14 (1), p.12-12, Article 12
Hauptverfasser: Kämpf, Michael M, Braun, Martin, Sirena, Dominique, Ihssen, Julian, Thöny-Meyer, Linda, Ren, Qun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 12
container_title Microbial cell factories
container_volume 14
creator Kämpf, Michael M
Braun, Martin
Sirena, Dominique
Ihssen, Julian
Thöny-Meyer, Linda
Ren, Qun
description Glycoconjugated vaccines composed of polysaccharide antigens covalently linked to immunogenic carrier proteins have proved to belong to the most effective and safest vaccines for combating bacterial pathogens. The functional transfer of the N-glycosylation machinery from Campylobacter jejuni to the standard prokaryotic host Escherichia coli established a novel bioconjugation methodology termed bacterial glycoengineering. In this study, we report on the production of a new recombinant glycoconjugate vaccine against Shigella flexneri 2a representing the major serotype for global outbreaks of shigellosis. We demonstrate that S. flexneri 2a O-polysaccharides can be transferred to a detoxified variant of Pseudomonas aeruginosa carrier protein exotoxin A (EPA) by the C. jejuni oligosaccharyltransferase PglB, resulting in glycosylated EPA-2a. Moreover, we optimized the in vivo production of this novel vaccine by identification and quantitative analysis of critical process parameters for glycoprotein synthesis. It was found that sequential induction of oligosaccharyltransferase PglB and carrier protein EPA increased the specific productivity of EPA-2a by a factor of 1.6. Furthermore, by the addition of 10 g/L of the monosaccharide N-acetylglucosamine during induction, glycoconjugate vaccine yield was boosted up to 3.1-fold. The optimum concentration of Mg2+ ions for N-glycan transfer was determined to be 10 mM. Finally, optimized parameters were transferred to high cell density cultures with a 46-fold increase of overall yield of glycoconjugate compared to the one in initial shake flask production. The present study is the first attempt to identify stimulating parameters for improved productivity of S. flexneri 2a bioconjugates. Optimization of glycosylation efficiency will ultimately foster the transfer of lab-scale expression to a cost-effective in vivo production process for a glycoconjugate vaccine against S. flexneri 2a in E. coli. This study is an important step towards this goal and provides a starting point for further optimization studies.
doi_str_mv 10.1186/s12934-015-0195-7
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4308876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541471519</galeid><sourcerecordid>A541471519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-e9bf556f412f948dd6162424e6000edb8fe868f0f3940ac151c8043d79ec8c183</originalsourceid><addsrcrecordid>eNqNkltrFDEUxwdR7EU_gC8S8EUfpiYzmUzGh0IprS4UBKvPIZs5mU3JJGuSWbpfy09oZrctXfBBQsjl_M4lJ_-ieEfwGSGcfY6k6mpaYtLk2TVl-6I4JrRtyoo33ctn-6PiJMY7jEnL2_p1cVQ1jFQtJcfFn4VDG7PxaB18P6lkvENeI4mc34BFg90qr7y7mwaZAG2kUsYBkoM0LiZ0uzIDWCuRtnDvIBhUSWQcCqD8uDROuoSuolpli1oZiZS35gsyPbhktFHyMV1MZpxsProBaamSDxFpH-ZQu-J2ZcSt3Tm8KV5paSO8fVhPi1_XVz8vv5U3378uLi9uStXUdSqhW-qmYZqSSneU9z0jrKIVBYYxhn7JNXDGNdZ1R7FUpCGKY1r3bQeKK8Lr0-J8H3c9LUfoVS46SCvWwYwybIWXRhxanFmJwW8ErTHnLcsBPj4ECP73BDGJ0UQ198uBn6IgrKUdw4zx_0AZpriq2zajH_boIC0I47TPydWMi4uG5i_PL-kydfYPKo8eRpM_FLTJ9wcOnw4cMpPgPg1yilEsbn8csmTPquBjDKCfmkKwmJUp9soUWZliVqaYy37_vJtPHo9SrP8CZ3bhfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660402377</pqid></control><display><type>article</type><title>In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Kämpf, Michael M ; Braun, Martin ; Sirena, Dominique ; Ihssen, Julian ; Thöny-Meyer, Linda ; Ren, Qun</creator><creatorcontrib>Kämpf, Michael M ; Braun, Martin ; Sirena, Dominique ; Ihssen, Julian ; Thöny-Meyer, Linda ; Ren, Qun</creatorcontrib><description>Glycoconjugated vaccines composed of polysaccharide antigens covalently linked to immunogenic carrier proteins have proved to belong to the most effective and safest vaccines for combating bacterial pathogens. The functional transfer of the N-glycosylation machinery from Campylobacter jejuni to the standard prokaryotic host Escherichia coli established a novel bioconjugation methodology termed bacterial glycoengineering. In this study, we report on the production of a new recombinant glycoconjugate vaccine against Shigella flexneri 2a representing the major serotype for global outbreaks of shigellosis. We demonstrate that S. flexneri 2a O-polysaccharides can be transferred to a detoxified variant of Pseudomonas aeruginosa carrier protein exotoxin A (EPA) by the C. jejuni oligosaccharyltransferase PglB, resulting in glycosylated EPA-2a. Moreover, we optimized the in vivo production of this novel vaccine by identification and quantitative analysis of critical process parameters for glycoprotein synthesis. It was found that sequential induction of oligosaccharyltransferase PglB and carrier protein EPA increased the specific productivity of EPA-2a by a factor of 1.6. Furthermore, by the addition of 10 g/L of the monosaccharide N-acetylglucosamine during induction, glycoconjugate vaccine yield was boosted up to 3.1-fold. The optimum concentration of Mg2+ ions for N-glycan transfer was determined to be 10 mM. Finally, optimized parameters were transferred to high cell density cultures with a 46-fold increase of overall yield of glycoconjugate compared to the one in initial shake flask production. The present study is the first attempt to identify stimulating parameters for improved productivity of S. flexneri 2a bioconjugates. Optimization of glycosylation efficiency will ultimately foster the transfer of lab-scale expression to a cost-effective in vivo production process for a glycoconjugate vaccine against S. flexneri 2a in E. coli. This study is an important step towards this goal and provides a starting point for further optimization studies.</description><identifier>ISSN: 1475-2859</identifier><identifier>EISSN: 1475-2859</identifier><identifier>DOI: 10.1186/s12934-015-0195-7</identifier><identifier>PMID: 25612741</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Acetylglucosamine - pharmacology ; Analysis ; Antigens ; Biomass ; Bioreactors - microbiology ; Blotting, Western ; Campylobacter jejuni ; Campylobacter jejuni - genetics ; Dysentery, Bacillary - immunology ; Dysentery, Bacillary - prevention &amp; control ; Escherichia coli ; Escherichia coli - genetics ; Fermentation ; Fructose ; Gene Expression - drug effects ; Gene Expression - immunology ; Glycoconjugates - genetics ; Glycoconjugates - immunology ; Glycoconjugates - metabolism ; Glycosylation - drug effects ; Health aspects ; Humans ; Immune response ; Kinetics ; Physiological aspects ; Protein Engineering - methods ; Pseudomonas aeruginosa ; Recombinant Proteins - immunology ; Recombinant Proteins - metabolism ; Reproducibility of Results ; Shigella flexneri ; Shigella flexneri - genetics ; Shigella flexneri - immunology ; Shigella Vaccines - genetics ; Shigella Vaccines - immunology ; Shigella Vaccines - metabolism ; Time Factors</subject><ispartof>Microbial cell factories, 2015-01, Vol.14 (1), p.12-12, Article 12</ispartof><rights>COPYRIGHT 2015 BioMed Central Ltd.</rights><rights>Kämpf et al.; licensee BioMed Central. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-e9bf556f412f948dd6162424e6000edb8fe868f0f3940ac151c8043d79ec8c183</citedby><cites>FETCH-LOGICAL-c533t-e9bf556f412f948dd6162424e6000edb8fe868f0f3940ac151c8043d79ec8c183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4308876/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4308876/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25612741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kämpf, Michael M</creatorcontrib><creatorcontrib>Braun, Martin</creatorcontrib><creatorcontrib>Sirena, Dominique</creatorcontrib><creatorcontrib>Ihssen, Julian</creatorcontrib><creatorcontrib>Thöny-Meyer, Linda</creatorcontrib><creatorcontrib>Ren, Qun</creatorcontrib><title>In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation</title><title>Microbial cell factories</title><addtitle>Microb Cell Fact</addtitle><description>Glycoconjugated vaccines composed of polysaccharide antigens covalently linked to immunogenic carrier proteins have proved to belong to the most effective and safest vaccines for combating bacterial pathogens. The functional transfer of the N-glycosylation machinery from Campylobacter jejuni to the standard prokaryotic host Escherichia coli established a novel bioconjugation methodology termed bacterial glycoengineering. In this study, we report on the production of a new recombinant glycoconjugate vaccine against Shigella flexneri 2a representing the major serotype for global outbreaks of shigellosis. We demonstrate that S. flexneri 2a O-polysaccharides can be transferred to a detoxified variant of Pseudomonas aeruginosa carrier protein exotoxin A (EPA) by the C. jejuni oligosaccharyltransferase PglB, resulting in glycosylated EPA-2a. Moreover, we optimized the in vivo production of this novel vaccine by identification and quantitative analysis of critical process parameters for glycoprotein synthesis. It was found that sequential induction of oligosaccharyltransferase PglB and carrier protein EPA increased the specific productivity of EPA-2a by a factor of 1.6. Furthermore, by the addition of 10 g/L of the monosaccharide N-acetylglucosamine during induction, glycoconjugate vaccine yield was boosted up to 3.1-fold. The optimum concentration of Mg2+ ions for N-glycan transfer was determined to be 10 mM. Finally, optimized parameters were transferred to high cell density cultures with a 46-fold increase of overall yield of glycoconjugate compared to the one in initial shake flask production. The present study is the first attempt to identify stimulating parameters for improved productivity of S. flexneri 2a bioconjugates. Optimization of glycosylation efficiency will ultimately foster the transfer of lab-scale expression to a cost-effective in vivo production process for a glycoconjugate vaccine against S. flexneri 2a in E. coli. This study is an important step towards this goal and provides a starting point for further optimization studies.</description><subject>Acetylglucosamine - pharmacology</subject><subject>Analysis</subject><subject>Antigens</subject><subject>Biomass</subject><subject>Bioreactors - microbiology</subject><subject>Blotting, Western</subject><subject>Campylobacter jejuni</subject><subject>Campylobacter jejuni - genetics</subject><subject>Dysentery, Bacillary - immunology</subject><subject>Dysentery, Bacillary - prevention &amp; control</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Fermentation</subject><subject>Fructose</subject><subject>Gene Expression - drug effects</subject><subject>Gene Expression - immunology</subject><subject>Glycoconjugates - genetics</subject><subject>Glycoconjugates - immunology</subject><subject>Glycoconjugates - metabolism</subject><subject>Glycosylation - drug effects</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immune response</subject><subject>Kinetics</subject><subject>Physiological aspects</subject><subject>Protein Engineering - methods</subject><subject>Pseudomonas aeruginosa</subject><subject>Recombinant Proteins - immunology</subject><subject>Recombinant Proteins - metabolism</subject><subject>Reproducibility of Results</subject><subject>Shigella flexneri</subject><subject>Shigella flexneri - genetics</subject><subject>Shigella flexneri - immunology</subject><subject>Shigella Vaccines - genetics</subject><subject>Shigella Vaccines - immunology</subject><subject>Shigella Vaccines - metabolism</subject><subject>Time Factors</subject><issn>1475-2859</issn><issn>1475-2859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkltrFDEUxwdR7EU_gC8S8EUfpiYzmUzGh0IprS4UBKvPIZs5mU3JJGuSWbpfy09oZrctXfBBQsjl_M4lJ_-ieEfwGSGcfY6k6mpaYtLk2TVl-6I4JrRtyoo33ctn-6PiJMY7jEnL2_p1cVQ1jFQtJcfFn4VDG7PxaB18P6lkvENeI4mc34BFg90qr7y7mwaZAG2kUsYBkoM0LiZ0uzIDWCuRtnDvIBhUSWQcCqD8uDROuoSuolpli1oZiZS35gsyPbhktFHyMV1MZpxsProBaamSDxFpH-ZQu-J2ZcSt3Tm8KV5paSO8fVhPi1_XVz8vv5U3378uLi9uStXUdSqhW-qmYZqSSneU9z0jrKIVBYYxhn7JNXDGNdZ1R7FUpCGKY1r3bQeKK8Lr0-J8H3c9LUfoVS46SCvWwYwybIWXRhxanFmJwW8ErTHnLcsBPj4ECP73BDGJ0UQ198uBn6IgrKUdw4zx_0AZpriq2zajH_boIC0I47TPydWMi4uG5i_PL-kydfYPKo8eRpM_FLTJ9wcOnw4cMpPgPg1yilEsbn8csmTPquBjDKCfmkKwmJUp9soUWZliVqaYy37_vJtPHo9SrP8CZ3bhfA</recordid><startdate>20150123</startdate><enddate>20150123</enddate><creator>Kämpf, Michael M</creator><creator>Braun, Martin</creator><creator>Sirena, Dominique</creator><creator>Ihssen, Julian</creator><creator>Thöny-Meyer, Linda</creator><creator>Ren, Qun</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150123</creationdate><title>In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation</title><author>Kämpf, Michael M ; Braun, Martin ; Sirena, Dominique ; Ihssen, Julian ; Thöny-Meyer, Linda ; Ren, Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-e9bf556f412f948dd6162424e6000edb8fe868f0f3940ac151c8043d79ec8c183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acetylglucosamine - pharmacology</topic><topic>Analysis</topic><topic>Antigens</topic><topic>Biomass</topic><topic>Bioreactors - microbiology</topic><topic>Blotting, Western</topic><topic>Campylobacter jejuni</topic><topic>Campylobacter jejuni - genetics</topic><topic>Dysentery, Bacillary - immunology</topic><topic>Dysentery, Bacillary - prevention &amp; control</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Fermentation</topic><topic>Fructose</topic><topic>Gene Expression - drug effects</topic><topic>Gene Expression - immunology</topic><topic>Glycoconjugates - genetics</topic><topic>Glycoconjugates - immunology</topic><topic>Glycoconjugates - metabolism</topic><topic>Glycosylation - drug effects</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immune response</topic><topic>Kinetics</topic><topic>Physiological aspects</topic><topic>Protein Engineering - methods</topic><topic>Pseudomonas aeruginosa</topic><topic>Recombinant Proteins - immunology</topic><topic>Recombinant Proteins - metabolism</topic><topic>Reproducibility of Results</topic><topic>Shigella flexneri</topic><topic>Shigella flexneri - genetics</topic><topic>Shigella flexneri - immunology</topic><topic>Shigella Vaccines - genetics</topic><topic>Shigella Vaccines - immunology</topic><topic>Shigella Vaccines - metabolism</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kämpf, Michael M</creatorcontrib><creatorcontrib>Braun, Martin</creatorcontrib><creatorcontrib>Sirena, Dominique</creatorcontrib><creatorcontrib>Ihssen, Julian</creatorcontrib><creatorcontrib>Thöny-Meyer, Linda</creatorcontrib><creatorcontrib>Ren, Qun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microbial cell factories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kämpf, Michael M</au><au>Braun, Martin</au><au>Sirena, Dominique</au><au>Ihssen, Julian</au><au>Thöny-Meyer, Linda</au><au>Ren, Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation</atitle><jtitle>Microbial cell factories</jtitle><addtitle>Microb Cell Fact</addtitle><date>2015-01-23</date><risdate>2015</risdate><volume>14</volume><issue>1</issue><spage>12</spage><epage>12</epage><pages>12-12</pages><artnum>12</artnum><issn>1475-2859</issn><eissn>1475-2859</eissn><abstract>Glycoconjugated vaccines composed of polysaccharide antigens covalently linked to immunogenic carrier proteins have proved to belong to the most effective and safest vaccines for combating bacterial pathogens. The functional transfer of the N-glycosylation machinery from Campylobacter jejuni to the standard prokaryotic host Escherichia coli established a novel bioconjugation methodology termed bacterial glycoengineering. In this study, we report on the production of a new recombinant glycoconjugate vaccine against Shigella flexneri 2a representing the major serotype for global outbreaks of shigellosis. We demonstrate that S. flexneri 2a O-polysaccharides can be transferred to a detoxified variant of Pseudomonas aeruginosa carrier protein exotoxin A (EPA) by the C. jejuni oligosaccharyltransferase PglB, resulting in glycosylated EPA-2a. Moreover, we optimized the in vivo production of this novel vaccine by identification and quantitative analysis of critical process parameters for glycoprotein synthesis. It was found that sequential induction of oligosaccharyltransferase PglB and carrier protein EPA increased the specific productivity of EPA-2a by a factor of 1.6. Furthermore, by the addition of 10 g/L of the monosaccharide N-acetylglucosamine during induction, glycoconjugate vaccine yield was boosted up to 3.1-fold. The optimum concentration of Mg2+ ions for N-glycan transfer was determined to be 10 mM. Finally, optimized parameters were transferred to high cell density cultures with a 46-fold increase of overall yield of glycoconjugate compared to the one in initial shake flask production. The present study is the first attempt to identify stimulating parameters for improved productivity of S. flexneri 2a bioconjugates. Optimization of glycosylation efficiency will ultimately foster the transfer of lab-scale expression to a cost-effective in vivo production process for a glycoconjugate vaccine against S. flexneri 2a in E. coli. This study is an important step towards this goal and provides a starting point for further optimization studies.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>25612741</pmid><doi>10.1186/s12934-015-0195-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1475-2859
ispartof Microbial cell factories, 2015-01, Vol.14 (1), p.12-12, Article 12
issn 1475-2859
1475-2859
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4308876
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Acetylglucosamine - pharmacology
Analysis
Antigens
Biomass
Bioreactors - microbiology
Blotting, Western
Campylobacter jejuni
Campylobacter jejuni - genetics
Dysentery, Bacillary - immunology
Dysentery, Bacillary - prevention & control
Escherichia coli
Escherichia coli - genetics
Fermentation
Fructose
Gene Expression - drug effects
Gene Expression - immunology
Glycoconjugates - genetics
Glycoconjugates - immunology
Glycoconjugates - metabolism
Glycosylation - drug effects
Health aspects
Humans
Immune response
Kinetics
Physiological aspects
Protein Engineering - methods
Pseudomonas aeruginosa
Recombinant Proteins - immunology
Recombinant Proteins - metabolism
Reproducibility of Results
Shigella flexneri
Shigella flexneri - genetics
Shigella flexneri - immunology
Shigella Vaccines - genetics
Shigella Vaccines - immunology
Shigella Vaccines - metabolism
Time Factors
title In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20production%20of%20a%20novel%20glycoconjugate%20vaccine%20against%20Shigella%20flexneri%202a%20in%20recombinant%20Escherichia%20coli:%20identification%20of%20stimulating%20factors%20for%20in%20vivo%20glycosylation&rft.jtitle=Microbial%20cell%20factories&rft.au=K%C3%A4mpf,%20Michael%20M&rft.date=2015-01-23&rft.volume=14&rft.issue=1&rft.spage=12&rft.epage=12&rft.pages=12-12&rft.artnum=12&rft.issn=1475-2859&rft.eissn=1475-2859&rft_id=info:doi/10.1186/s12934-015-0195-7&rft_dat=%3Cgale_pubme%3EA541471519%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660402377&rft_id=info:pmid/25612741&rft_galeid=A541471519&rfr_iscdi=true