Extending the time window of mammalian heart regeneration by thymosin beta 4
Recent studies demonstrated that the heart of 1‐day‐old neonatal mice could regenerate, with Wt1+ EPDCs migrating into myocardial regions after partial surgical resection, but this capacity was lost by 7 days of age. By treatment with Tβ4 to maintain Wt1 expression and retain the migrating feature o...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2014-12, Vol.18 (12), p.2417-2424 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2424 |
---|---|
container_issue | 12 |
container_start_page | 2417 |
container_title | Journal of cellular and molecular medicine |
container_volume | 18 |
creator | Rui, Liu Yu, Nie Hong, Lian Feng, He Chunyong, Han Jian, Meng Zhe, Zheng Shengshou, Hu |
description | Recent studies demonstrated that the heart of 1‐day‐old neonatal mice could regenerate, with Wt1+ EPDCs migrating into myocardial regions after partial surgical resection, but this capacity was lost by 7 days of age. By treatment with Tβ4 to maintain Wt1 expression and retain the migrating feature of EPDCs in neonatal mice, we explored the possibility of restoring the cardiac regeneration potential of mice. We intraperitoneally injected Tβ4 into 1‐day‐old mice on daily basis and then apical resection was performed on the mice 7 days later. Twenty one days after the resection, morphological analysis revealed that the Tβ4‐treated mice regenerated the resected ventricular apex, while the mice in PBS control group developed significant fibrosis without apical regeneration. The Tβ4‐treated mice had significantly better ventricular ejection fraction and fractional shortening than controls. During the process of regeneration, Wt1+ EPDCs migrated into myocardial region and some of them expressed Islet1 and the markers for mature cardiomyocytes, such as cTnT and SαA. These characteristics of Wt1+ EPDCs were also seen in the heart regeneration of mice subjected to apical resection 1 day after birth. Tβ4 has no essential effect on cell cycle activity as no disruption of actin filaments was observed in Tβ4‐treated hearts. These results revealed that the cardiac regeneration potential of neonatal mice could be extended to the 7th post‐natal day by Tβ4 and Wt1+ EPDCs mobilization might play an important role in the extension. |
doi_str_mv | 10.1111/jcmm.12421 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4302647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1627072923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5141-9c4e6ab00384b1004d74a73a1c19aeb0c6f510e4665d204c45650e97f96a35a83</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMozji68QEk4EaEHvNXqcpGGJrxjx7c6DrcSt3qTlNJxqTatt_ejN0O6sJsciFfPs7lEPKcs0tez5utC-GSCyX4A3LOm04slJHq4WnmnezOyJNStoxJzaV5TM5EIzrVivacrK5_zBgHH9d03iCdfUC693FIe5pGGiAEmDxEukHIM824xogZZp8i7Q_1yyGk4uuMM1D1lDwaYSr47HRfkK_vrr8sPyxWn99_XF6tFq7hii-MU6ihr3E61XPG1NAqaCVwxw1gz5weG85Qad0MgimnGt0wNO1oNMgGOnlB3h69t7s-4OAwzhkme5t9gHywCbz9-yX6jV2n71ZJJrRqq-DVSZDTtx2W2QZfHE4TREy7YrkWLWuFEbKiL_9Bt2mXY13PCmFYzaYMr9TrI-VyKiXjeB-GM3tXkr0ryf4qqcIv_ox_j_5upQL8COz9hIf_qOyn5c3NUfoT_Oeb7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290456491</pqid></control><display><type>article</type><title>Extending the time window of mammalian heart regeneration by thymosin beta 4</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Rui, Liu ; Yu, Nie ; Hong, Lian ; Feng, He ; Chunyong, Han ; Jian, Meng ; Zhe, Zheng ; Shengshou, Hu</creator><creatorcontrib>Rui, Liu ; Yu, Nie ; Hong, Lian ; Feng, He ; Chunyong, Han ; Jian, Meng ; Zhe, Zheng ; Shengshou, Hu</creatorcontrib><description>Recent studies demonstrated that the heart of 1‐day‐old neonatal mice could regenerate, with Wt1+ EPDCs migrating into myocardial regions after partial surgical resection, but this capacity was lost by 7 days of age. By treatment with Tβ4 to maintain Wt1 expression and retain the migrating feature of EPDCs in neonatal mice, we explored the possibility of restoring the cardiac regeneration potential of mice. We intraperitoneally injected Tβ4 into 1‐day‐old mice on daily basis and then apical resection was performed on the mice 7 days later. Twenty one days after the resection, morphological analysis revealed that the Tβ4‐treated mice regenerated the resected ventricular apex, while the mice in PBS control group developed significant fibrosis without apical regeneration. The Tβ4‐treated mice had significantly better ventricular ejection fraction and fractional shortening than controls. During the process of regeneration, Wt1+ EPDCs migrated into myocardial region and some of them expressed Islet1 and the markers for mature cardiomyocytes, such as cTnT and SαA. These characteristics of Wt1+ EPDCs were also seen in the heart regeneration of mice subjected to apical resection 1 day after birth. Tβ4 has no essential effect on cell cycle activity as no disruption of actin filaments was observed in Tβ4‐treated hearts. These results revealed that the cardiac regeneration potential of neonatal mice could be extended to the 7th post‐natal day by Tβ4 and Wt1+ EPDCs mobilization might play an important role in the extension.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.12421</identifier><identifier>PMID: 25284727</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Actin ; Actinin - metabolism ; Angiogenesis ; Animals ; Animals, Newborn ; cardiac regeneration ; Cardiomyocytes ; Cell adhesion & migration ; Cell cycle ; Cell Movement - drug effects ; Disruption ; Echocardiography ; EPDCs ; Fibrosis ; Filaments ; Heart ; Immunoglobulins ; Injections, Intraperitoneal ; Islet-1 protein ; Localization ; Mice ; Microscopy, Confocal ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - physiology ; neonatal mouse ; Neonates ; Original ; Pericardium - cytology ; Pericardium - metabolism ; Pericardium - physiology ; Regeneration - drug effects ; Rodents ; Sarcomeres - metabolism ; Stem cells ; Stroke Volume - physiology ; Studies ; Thymosin - administration & dosage ; Thymosin - pharmacology ; Time Factors ; Troponin T - metabolism ; Tβ4 ; Ultrasonic imaging ; Ventricle ; WT1 Proteins - metabolism</subject><ispartof>Journal of cellular and molecular medicine, 2014-12, Vol.18 (12), p.2417-2424</ispartof><rights>2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.</rights><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5141-9c4e6ab00384b1004d74a73a1c19aeb0c6f510e4665d204c45650e97f96a35a83</citedby><cites>FETCH-LOGICAL-c5141-9c4e6ab00384b1004d74a73a1c19aeb0c6f510e4665d204c45650e97f96a35a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302647/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302647/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25284727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rui, Liu</creatorcontrib><creatorcontrib>Yu, Nie</creatorcontrib><creatorcontrib>Hong, Lian</creatorcontrib><creatorcontrib>Feng, He</creatorcontrib><creatorcontrib>Chunyong, Han</creatorcontrib><creatorcontrib>Jian, Meng</creatorcontrib><creatorcontrib>Zhe, Zheng</creatorcontrib><creatorcontrib>Shengshou, Hu</creatorcontrib><title>Extending the time window of mammalian heart regeneration by thymosin beta 4</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Recent studies demonstrated that the heart of 1‐day‐old neonatal mice could regenerate, with Wt1+ EPDCs migrating into myocardial regions after partial surgical resection, but this capacity was lost by 7 days of age. By treatment with Tβ4 to maintain Wt1 expression and retain the migrating feature of EPDCs in neonatal mice, we explored the possibility of restoring the cardiac regeneration potential of mice. We intraperitoneally injected Tβ4 into 1‐day‐old mice on daily basis and then apical resection was performed on the mice 7 days later. Twenty one days after the resection, morphological analysis revealed that the Tβ4‐treated mice regenerated the resected ventricular apex, while the mice in PBS control group developed significant fibrosis without apical regeneration. The Tβ4‐treated mice had significantly better ventricular ejection fraction and fractional shortening than controls. During the process of regeneration, Wt1+ EPDCs migrated into myocardial region and some of them expressed Islet1 and the markers for mature cardiomyocytes, such as cTnT and SαA. These characteristics of Wt1+ EPDCs were also seen in the heart regeneration of mice subjected to apical resection 1 day after birth. Tβ4 has no essential effect on cell cycle activity as no disruption of actin filaments was observed in Tβ4‐treated hearts. These results revealed that the cardiac regeneration potential of neonatal mice could be extended to the 7th post‐natal day by Tβ4 and Wt1+ EPDCs mobilization might play an important role in the extension.</description><subject>Actin</subject><subject>Actinin - metabolism</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>cardiac regeneration</subject><subject>Cardiomyocytes</subject><subject>Cell adhesion & migration</subject><subject>Cell cycle</subject><subject>Cell Movement - drug effects</subject><subject>Disruption</subject><subject>Echocardiography</subject><subject>EPDCs</subject><subject>Fibrosis</subject><subject>Filaments</subject><subject>Heart</subject><subject>Immunoglobulins</subject><subject>Injections, Intraperitoneal</subject><subject>Islet-1 protein</subject><subject>Localization</subject><subject>Mice</subject><subject>Microscopy, Confocal</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - physiology</subject><subject>neonatal mouse</subject><subject>Neonates</subject><subject>Original</subject><subject>Pericardium - cytology</subject><subject>Pericardium - metabolism</subject><subject>Pericardium - physiology</subject><subject>Regeneration - drug effects</subject><subject>Rodents</subject><subject>Sarcomeres - metabolism</subject><subject>Stem cells</subject><subject>Stroke Volume - physiology</subject><subject>Studies</subject><subject>Thymosin - administration & dosage</subject><subject>Thymosin - pharmacology</subject><subject>Time Factors</subject><subject>Troponin T - metabolism</subject><subject>Tβ4</subject><subject>Ultrasonic imaging</subject><subject>Ventricle</subject><subject>WT1 Proteins - metabolism</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc2KFDEUhYMozji68QEk4EaEHvNXqcpGGJrxjx7c6DrcSt3qTlNJxqTatt_ejN0O6sJsciFfPs7lEPKcs0tez5utC-GSCyX4A3LOm04slJHq4WnmnezOyJNStoxJzaV5TM5EIzrVivacrK5_zBgHH9d03iCdfUC693FIe5pGGiAEmDxEukHIM824xogZZp8i7Q_1yyGk4uuMM1D1lDwaYSr47HRfkK_vrr8sPyxWn99_XF6tFq7hii-MU6ihr3E61XPG1NAqaCVwxw1gz5weG85Qad0MgimnGt0wNO1oNMgGOnlB3h69t7s-4OAwzhkme5t9gHywCbz9-yX6jV2n71ZJJrRqq-DVSZDTtx2W2QZfHE4TREy7YrkWLWuFEbKiL_9Bt2mXY13PCmFYzaYMr9TrI-VyKiXjeB-GM3tXkr0ryf4qqcIv_ox_j_5upQL8COz9hIf_qOyn5c3NUfoT_Oeb7w</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Rui, Liu</creator><creator>Yu, Nie</creator><creator>Hong, Lian</creator><creator>Feng, He</creator><creator>Chunyong, Han</creator><creator>Jian, Meng</creator><creator>Zhe, Zheng</creator><creator>Shengshou, Hu</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201412</creationdate><title>Extending the time window of mammalian heart regeneration by thymosin beta 4</title><author>Rui, Liu ; Yu, Nie ; Hong, Lian ; Feng, He ; Chunyong, Han ; Jian, Meng ; Zhe, Zheng ; Shengshou, Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5141-9c4e6ab00384b1004d74a73a1c19aeb0c6f510e4665d204c45650e97f96a35a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actin</topic><topic>Actinin - metabolism</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>cardiac regeneration</topic><topic>Cardiomyocytes</topic><topic>Cell adhesion & migration</topic><topic>Cell cycle</topic><topic>Cell Movement - drug effects</topic><topic>Disruption</topic><topic>Echocardiography</topic><topic>EPDCs</topic><topic>Fibrosis</topic><topic>Filaments</topic><topic>Heart</topic><topic>Immunoglobulins</topic><topic>Injections, Intraperitoneal</topic><topic>Islet-1 protein</topic><topic>Localization</topic><topic>Mice</topic><topic>Microscopy, Confocal</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - physiology</topic><topic>neonatal mouse</topic><topic>Neonates</topic><topic>Original</topic><topic>Pericardium - cytology</topic><topic>Pericardium - metabolism</topic><topic>Pericardium - physiology</topic><topic>Regeneration - drug effects</topic><topic>Rodents</topic><topic>Sarcomeres - metabolism</topic><topic>Stem cells</topic><topic>Stroke Volume - physiology</topic><topic>Studies</topic><topic>Thymosin - administration & dosage</topic><topic>Thymosin - pharmacology</topic><topic>Time Factors</topic><topic>Troponin T - metabolism</topic><topic>Tβ4</topic><topic>Ultrasonic imaging</topic><topic>Ventricle</topic><topic>WT1 Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rui, Liu</creatorcontrib><creatorcontrib>Yu, Nie</creatorcontrib><creatorcontrib>Hong, Lian</creatorcontrib><creatorcontrib>Feng, He</creatorcontrib><creatorcontrib>Chunyong, Han</creatorcontrib><creatorcontrib>Jian, Meng</creatorcontrib><creatorcontrib>Zhe, Zheng</creatorcontrib><creatorcontrib>Shengshou, Hu</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rui, Liu</au><au>Yu, Nie</au><au>Hong, Lian</au><au>Feng, He</au><au>Chunyong, Han</au><au>Jian, Meng</au><au>Zhe, Zheng</au><au>Shengshou, Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extending the time window of mammalian heart regeneration by thymosin beta 4</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2014-12</date><risdate>2014</risdate><volume>18</volume><issue>12</issue><spage>2417</spage><epage>2424</epage><pages>2417-2424</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Recent studies demonstrated that the heart of 1‐day‐old neonatal mice could regenerate, with Wt1+ EPDCs migrating into myocardial regions after partial surgical resection, but this capacity was lost by 7 days of age. By treatment with Tβ4 to maintain Wt1 expression and retain the migrating feature of EPDCs in neonatal mice, we explored the possibility of restoring the cardiac regeneration potential of mice. We intraperitoneally injected Tβ4 into 1‐day‐old mice on daily basis and then apical resection was performed on the mice 7 days later. Twenty one days after the resection, morphological analysis revealed that the Tβ4‐treated mice regenerated the resected ventricular apex, while the mice in PBS control group developed significant fibrosis without apical regeneration. The Tβ4‐treated mice had significantly better ventricular ejection fraction and fractional shortening than controls. During the process of regeneration, Wt1+ EPDCs migrated into myocardial region and some of them expressed Islet1 and the markers for mature cardiomyocytes, such as cTnT and SαA. These characteristics of Wt1+ EPDCs were also seen in the heart regeneration of mice subjected to apical resection 1 day after birth. Tβ4 has no essential effect on cell cycle activity as no disruption of actin filaments was observed in Tβ4‐treated hearts. These results revealed that the cardiac regeneration potential of neonatal mice could be extended to the 7th post‐natal day by Tβ4 and Wt1+ EPDCs mobilization might play an important role in the extension.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>25284727</pmid><doi>10.1111/jcmm.12421</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2014-12, Vol.18 (12), p.2417-2424 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4302647 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Actin Actinin - metabolism Angiogenesis Animals Animals, Newborn cardiac regeneration Cardiomyocytes Cell adhesion & migration Cell cycle Cell Movement - drug effects Disruption Echocardiography EPDCs Fibrosis Filaments Heart Immunoglobulins Injections, Intraperitoneal Islet-1 protein Localization Mice Microscopy, Confocal Myocytes, Cardiac - metabolism Myocytes, Cardiac - physiology neonatal mouse Neonates Original Pericardium - cytology Pericardium - metabolism Pericardium - physiology Regeneration - drug effects Rodents Sarcomeres - metabolism Stem cells Stroke Volume - physiology Studies Thymosin - administration & dosage Thymosin - pharmacology Time Factors Troponin T - metabolism Tβ4 Ultrasonic imaging Ventricle WT1 Proteins - metabolism |
title | Extending the time window of mammalian heart regeneration by thymosin beta 4 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extending%20the%20time%20window%20of%20mammalian%20heart%20regeneration%20by%20thymosin%20beta%204&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Rui,%20Liu&rft.date=2014-12&rft.volume=18&rft.issue=12&rft.spage=2417&rft.epage=2424&rft.pages=2417-2424&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.12421&rft_dat=%3Cproquest_pubme%3E1627072923%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290456491&rft_id=info:pmid/25284727&rfr_iscdi=true |