Extending the time window of mammalian heart regeneration by thymosin beta 4

Recent studies demonstrated that the heart of 1‐day‐old neonatal mice could regenerate, with Wt1+ EPDCs migrating into myocardial regions after partial surgical resection, but this capacity was lost by 7 days of age. By treatment with Tβ4 to maintain Wt1 expression and retain the migrating feature o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2014-12, Vol.18 (12), p.2417-2424
Hauptverfasser: Rui, Liu, Yu, Nie, Hong, Lian, Feng, He, Chunyong, Han, Jian, Meng, Zhe, Zheng, Shengshou, Hu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2424
container_issue 12
container_start_page 2417
container_title Journal of cellular and molecular medicine
container_volume 18
creator Rui, Liu
Yu, Nie
Hong, Lian
Feng, He
Chunyong, Han
Jian, Meng
Zhe, Zheng
Shengshou, Hu
description Recent studies demonstrated that the heart of 1‐day‐old neonatal mice could regenerate, with Wt1+ EPDCs migrating into myocardial regions after partial surgical resection, but this capacity was lost by 7 days of age. By treatment with Tβ4 to maintain Wt1 expression and retain the migrating feature of EPDCs in neonatal mice, we explored the possibility of restoring the cardiac regeneration potential of mice. We intraperitoneally injected Tβ4 into 1‐day‐old mice on daily basis and then apical resection was performed on the mice 7 days later. Twenty one days after the resection, morphological analysis revealed that the Tβ4‐treated mice regenerated the resected ventricular apex, while the mice in PBS control group developed significant fibrosis without apical regeneration. The Tβ4‐treated mice had significantly better ventricular ejection fraction and fractional shortening than controls. During the process of regeneration, Wt1+ EPDCs migrated into myocardial region and some of them expressed Islet1 and the markers for mature cardiomyocytes, such as cTnT and SαA. These characteristics of Wt1+ EPDCs were also seen in the heart regeneration of mice subjected to apical resection 1 day after birth. Tβ4 has no essential effect on cell cycle activity as no disruption of actin filaments was observed in Tβ4‐treated hearts. These results revealed that the cardiac regeneration potential of neonatal mice could be extended to the 7th post‐natal day by Tβ4 and Wt1+ EPDCs mobilization might play an important role in the extension.
doi_str_mv 10.1111/jcmm.12421
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4302647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1627072923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5141-9c4e6ab00384b1004d74a73a1c19aeb0c6f510e4665d204c45650e97f96a35a83</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMozji68QEk4EaEHvNXqcpGGJrxjx7c6DrcSt3qTlNJxqTatt_ejN0O6sJsciFfPs7lEPKcs0tez5utC-GSCyX4A3LOm04slJHq4WnmnezOyJNStoxJzaV5TM5EIzrVivacrK5_zBgHH9d03iCdfUC693FIe5pGGiAEmDxEukHIM824xogZZp8i7Q_1yyGk4uuMM1D1lDwaYSr47HRfkK_vrr8sPyxWn99_XF6tFq7hii-MU6ihr3E61XPG1NAqaCVwxw1gz5weG85Qad0MgimnGt0wNO1oNMgGOnlB3h69t7s-4OAwzhkme5t9gHywCbz9-yX6jV2n71ZJJrRqq-DVSZDTtx2W2QZfHE4TREy7YrkWLWuFEbKiL_9Bt2mXY13PCmFYzaYMr9TrI-VyKiXjeB-GM3tXkr0ryf4qqcIv_ox_j_5upQL8COz9hIf_qOyn5c3NUfoT_Oeb7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290456491</pqid></control><display><type>article</type><title>Extending the time window of mammalian heart regeneration by thymosin beta 4</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Rui, Liu ; Yu, Nie ; Hong, Lian ; Feng, He ; Chunyong, Han ; Jian, Meng ; Zhe, Zheng ; Shengshou, Hu</creator><creatorcontrib>Rui, Liu ; Yu, Nie ; Hong, Lian ; Feng, He ; Chunyong, Han ; Jian, Meng ; Zhe, Zheng ; Shengshou, Hu</creatorcontrib><description>Recent studies demonstrated that the heart of 1‐day‐old neonatal mice could regenerate, with Wt1+ EPDCs migrating into myocardial regions after partial surgical resection, but this capacity was lost by 7 days of age. By treatment with Tβ4 to maintain Wt1 expression and retain the migrating feature of EPDCs in neonatal mice, we explored the possibility of restoring the cardiac regeneration potential of mice. We intraperitoneally injected Tβ4 into 1‐day‐old mice on daily basis and then apical resection was performed on the mice 7 days later. Twenty one days after the resection, morphological analysis revealed that the Tβ4‐treated mice regenerated the resected ventricular apex, while the mice in PBS control group developed significant fibrosis without apical regeneration. The Tβ4‐treated mice had significantly better ventricular ejection fraction and fractional shortening than controls. During the process of regeneration, Wt1+ EPDCs migrated into myocardial region and some of them expressed Islet1 and the markers for mature cardiomyocytes, such as cTnT and SαA. These characteristics of Wt1+ EPDCs were also seen in the heart regeneration of mice subjected to apical resection 1 day after birth. Tβ4 has no essential effect on cell cycle activity as no disruption of actin filaments was observed in Tβ4‐treated hearts. These results revealed that the cardiac regeneration potential of neonatal mice could be extended to the 7th post‐natal day by Tβ4 and Wt1+ EPDCs mobilization might play an important role in the extension.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.12421</identifier><identifier>PMID: 25284727</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Actin ; Actinin - metabolism ; Angiogenesis ; Animals ; Animals, Newborn ; cardiac regeneration ; Cardiomyocytes ; Cell adhesion &amp; migration ; Cell cycle ; Cell Movement - drug effects ; Disruption ; Echocardiography ; EPDCs ; Fibrosis ; Filaments ; Heart ; Immunoglobulins ; Injections, Intraperitoneal ; Islet-1 protein ; Localization ; Mice ; Microscopy, Confocal ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - physiology ; neonatal mouse ; Neonates ; Original ; Pericardium - cytology ; Pericardium - metabolism ; Pericardium - physiology ; Regeneration - drug effects ; Rodents ; Sarcomeres - metabolism ; Stem cells ; Stroke Volume - physiology ; Studies ; Thymosin - administration &amp; dosage ; Thymosin - pharmacology ; Time Factors ; Troponin T - metabolism ; Tβ4 ; Ultrasonic imaging ; Ventricle ; WT1 Proteins - metabolism</subject><ispartof>Journal of cellular and molecular medicine, 2014-12, Vol.18 (12), p.2417-2424</ispartof><rights>2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley &amp; Sons Ltd and Foundation for Cellular and Molecular Medicine.</rights><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley &amp; Sons Ltd and Foundation for Cellular and Molecular Medicine. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5141-9c4e6ab00384b1004d74a73a1c19aeb0c6f510e4665d204c45650e97f96a35a83</citedby><cites>FETCH-LOGICAL-c5141-9c4e6ab00384b1004d74a73a1c19aeb0c6f510e4665d204c45650e97f96a35a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302647/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302647/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25284727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rui, Liu</creatorcontrib><creatorcontrib>Yu, Nie</creatorcontrib><creatorcontrib>Hong, Lian</creatorcontrib><creatorcontrib>Feng, He</creatorcontrib><creatorcontrib>Chunyong, Han</creatorcontrib><creatorcontrib>Jian, Meng</creatorcontrib><creatorcontrib>Zhe, Zheng</creatorcontrib><creatorcontrib>Shengshou, Hu</creatorcontrib><title>Extending the time window of mammalian heart regeneration by thymosin beta 4</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Recent studies demonstrated that the heart of 1‐day‐old neonatal mice could regenerate, with Wt1+ EPDCs migrating into myocardial regions after partial surgical resection, but this capacity was lost by 7 days of age. By treatment with Tβ4 to maintain Wt1 expression and retain the migrating feature of EPDCs in neonatal mice, we explored the possibility of restoring the cardiac regeneration potential of mice. We intraperitoneally injected Tβ4 into 1‐day‐old mice on daily basis and then apical resection was performed on the mice 7 days later. Twenty one days after the resection, morphological analysis revealed that the Tβ4‐treated mice regenerated the resected ventricular apex, while the mice in PBS control group developed significant fibrosis without apical regeneration. The Tβ4‐treated mice had significantly better ventricular ejection fraction and fractional shortening than controls. During the process of regeneration, Wt1+ EPDCs migrated into myocardial region and some of them expressed Islet1 and the markers for mature cardiomyocytes, such as cTnT and SαA. These characteristics of Wt1+ EPDCs were also seen in the heart regeneration of mice subjected to apical resection 1 day after birth. Tβ4 has no essential effect on cell cycle activity as no disruption of actin filaments was observed in Tβ4‐treated hearts. These results revealed that the cardiac regeneration potential of neonatal mice could be extended to the 7th post‐natal day by Tβ4 and Wt1+ EPDCs mobilization might play an important role in the extension.</description><subject>Actin</subject><subject>Actinin - metabolism</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>cardiac regeneration</subject><subject>Cardiomyocytes</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell cycle</subject><subject>Cell Movement - drug effects</subject><subject>Disruption</subject><subject>Echocardiography</subject><subject>EPDCs</subject><subject>Fibrosis</subject><subject>Filaments</subject><subject>Heart</subject><subject>Immunoglobulins</subject><subject>Injections, Intraperitoneal</subject><subject>Islet-1 protein</subject><subject>Localization</subject><subject>Mice</subject><subject>Microscopy, Confocal</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - physiology</subject><subject>neonatal mouse</subject><subject>Neonates</subject><subject>Original</subject><subject>Pericardium - cytology</subject><subject>Pericardium - metabolism</subject><subject>Pericardium - physiology</subject><subject>Regeneration - drug effects</subject><subject>Rodents</subject><subject>Sarcomeres - metabolism</subject><subject>Stem cells</subject><subject>Stroke Volume - physiology</subject><subject>Studies</subject><subject>Thymosin - administration &amp; dosage</subject><subject>Thymosin - pharmacology</subject><subject>Time Factors</subject><subject>Troponin T - metabolism</subject><subject>Tβ4</subject><subject>Ultrasonic imaging</subject><subject>Ventricle</subject><subject>WT1 Proteins - metabolism</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc2KFDEUhYMozji68QEk4EaEHvNXqcpGGJrxjx7c6DrcSt3qTlNJxqTatt_ejN0O6sJsciFfPs7lEPKcs0tez5utC-GSCyX4A3LOm04slJHq4WnmnezOyJNStoxJzaV5TM5EIzrVivacrK5_zBgHH9d03iCdfUC693FIe5pGGiAEmDxEukHIM824xogZZp8i7Q_1yyGk4uuMM1D1lDwaYSr47HRfkK_vrr8sPyxWn99_XF6tFq7hii-MU6ihr3E61XPG1NAqaCVwxw1gz5weG85Qad0MgimnGt0wNO1oNMgGOnlB3h69t7s-4OAwzhkme5t9gHywCbz9-yX6jV2n71ZJJrRqq-DVSZDTtx2W2QZfHE4TREy7YrkWLWuFEbKiL_9Bt2mXY13PCmFYzaYMr9TrI-VyKiXjeB-GM3tXkr0ryf4qqcIv_ox_j_5upQL8COz9hIf_qOyn5c3NUfoT_Oeb7w</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Rui, Liu</creator><creator>Yu, Nie</creator><creator>Hong, Lian</creator><creator>Feng, He</creator><creator>Chunyong, Han</creator><creator>Jian, Meng</creator><creator>Zhe, Zheng</creator><creator>Shengshou, Hu</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201412</creationdate><title>Extending the time window of mammalian heart regeneration by thymosin beta 4</title><author>Rui, Liu ; Yu, Nie ; Hong, Lian ; Feng, He ; Chunyong, Han ; Jian, Meng ; Zhe, Zheng ; Shengshou, Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5141-9c4e6ab00384b1004d74a73a1c19aeb0c6f510e4665d204c45650e97f96a35a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actin</topic><topic>Actinin - metabolism</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>cardiac regeneration</topic><topic>Cardiomyocytes</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell cycle</topic><topic>Cell Movement - drug effects</topic><topic>Disruption</topic><topic>Echocardiography</topic><topic>EPDCs</topic><topic>Fibrosis</topic><topic>Filaments</topic><topic>Heart</topic><topic>Immunoglobulins</topic><topic>Injections, Intraperitoneal</topic><topic>Islet-1 protein</topic><topic>Localization</topic><topic>Mice</topic><topic>Microscopy, Confocal</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - physiology</topic><topic>neonatal mouse</topic><topic>Neonates</topic><topic>Original</topic><topic>Pericardium - cytology</topic><topic>Pericardium - metabolism</topic><topic>Pericardium - physiology</topic><topic>Regeneration - drug effects</topic><topic>Rodents</topic><topic>Sarcomeres - metabolism</topic><topic>Stem cells</topic><topic>Stroke Volume - physiology</topic><topic>Studies</topic><topic>Thymosin - administration &amp; dosage</topic><topic>Thymosin - pharmacology</topic><topic>Time Factors</topic><topic>Troponin T - metabolism</topic><topic>Tβ4</topic><topic>Ultrasonic imaging</topic><topic>Ventricle</topic><topic>WT1 Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rui, Liu</creatorcontrib><creatorcontrib>Yu, Nie</creatorcontrib><creatorcontrib>Hong, Lian</creatorcontrib><creatorcontrib>Feng, He</creatorcontrib><creatorcontrib>Chunyong, Han</creatorcontrib><creatorcontrib>Jian, Meng</creatorcontrib><creatorcontrib>Zhe, Zheng</creatorcontrib><creatorcontrib>Shengshou, Hu</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rui, Liu</au><au>Yu, Nie</au><au>Hong, Lian</au><au>Feng, He</au><au>Chunyong, Han</au><au>Jian, Meng</au><au>Zhe, Zheng</au><au>Shengshou, Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extending the time window of mammalian heart regeneration by thymosin beta 4</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2014-12</date><risdate>2014</risdate><volume>18</volume><issue>12</issue><spage>2417</spage><epage>2424</epage><pages>2417-2424</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Recent studies demonstrated that the heart of 1‐day‐old neonatal mice could regenerate, with Wt1+ EPDCs migrating into myocardial regions after partial surgical resection, but this capacity was lost by 7 days of age. By treatment with Tβ4 to maintain Wt1 expression and retain the migrating feature of EPDCs in neonatal mice, we explored the possibility of restoring the cardiac regeneration potential of mice. We intraperitoneally injected Tβ4 into 1‐day‐old mice on daily basis and then apical resection was performed on the mice 7 days later. Twenty one days after the resection, morphological analysis revealed that the Tβ4‐treated mice regenerated the resected ventricular apex, while the mice in PBS control group developed significant fibrosis without apical regeneration. The Tβ4‐treated mice had significantly better ventricular ejection fraction and fractional shortening than controls. During the process of regeneration, Wt1+ EPDCs migrated into myocardial region and some of them expressed Islet1 and the markers for mature cardiomyocytes, such as cTnT and SαA. These characteristics of Wt1+ EPDCs were also seen in the heart regeneration of mice subjected to apical resection 1 day after birth. Tβ4 has no essential effect on cell cycle activity as no disruption of actin filaments was observed in Tβ4‐treated hearts. These results revealed that the cardiac regeneration potential of neonatal mice could be extended to the 7th post‐natal day by Tβ4 and Wt1+ EPDCs mobilization might play an important role in the extension.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>25284727</pmid><doi>10.1111/jcmm.12421</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2014-12, Vol.18 (12), p.2417-2424
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4302647
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Actin
Actinin - metabolism
Angiogenesis
Animals
Animals, Newborn
cardiac regeneration
Cardiomyocytes
Cell adhesion & migration
Cell cycle
Cell Movement - drug effects
Disruption
Echocardiography
EPDCs
Fibrosis
Filaments
Heart
Immunoglobulins
Injections, Intraperitoneal
Islet-1 protein
Localization
Mice
Microscopy, Confocal
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - physiology
neonatal mouse
Neonates
Original
Pericardium - cytology
Pericardium - metabolism
Pericardium - physiology
Regeneration - drug effects
Rodents
Sarcomeres - metabolism
Stem cells
Stroke Volume - physiology
Studies
Thymosin - administration & dosage
Thymosin - pharmacology
Time Factors
Troponin T - metabolism
Tβ4
Ultrasonic imaging
Ventricle
WT1 Proteins - metabolism
title Extending the time window of mammalian heart regeneration by thymosin beta 4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extending%20the%20time%20window%20of%20mammalian%20heart%20regeneration%20by%20thymosin%20beta%204&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Rui,%20Liu&rft.date=2014-12&rft.volume=18&rft.issue=12&rft.spage=2417&rft.epage=2424&rft.pages=2417-2424&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.12421&rft_dat=%3Cproquest_pubme%3E1627072923%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290456491&rft_id=info:pmid/25284727&rfr_iscdi=true