LAILAPS: the plant science search engine
With the number of sequenced plant genomes growing, the number of predicted genes and functional annotations is also increasing. The association between genes and phenotypic traits is currently of great interest. Unfortunately, the information available today is widely scattered over a number of dif...
Gespeichert in:
Veröffentlicht in: | Plant and cell physiology 2015-01, Vol.56 (1), p.e8-e8 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e8 |
---|---|
container_issue | 1 |
container_start_page | e8 |
container_title | Plant and cell physiology |
container_volume | 56 |
creator | Esch, Maria Chen, Jinbo Colmsee, Christian Klapperstück, Matthias Grafahrend-Belau, Eva Scholz, Uwe Lange, Matthias |
description | With the number of sequenced plant genomes growing, the number of predicted genes and functional annotations is also increasing. The association between genes and phenotypic traits is currently of great interest. Unfortunately, the information available today is widely scattered over a number of different databases. Information retrieval (IR) has become an all-encompassing bioinformatics methodology for extracting knowledge from complex, heterogeneous and distributed databases, and therefore can be a useful tool for obtaining a comprehensive view of plant genomics, from genes to traits. Here we describe LAILAPS (http://lailaps.ipk-gatersleben.de), an IR system designed to link plant genomic data in the context of phenotypic attributes for a detailed forward genetic research. LAILAPS comprises around 65 million indexed documents, encompassing >13 major life science databases with around 80 million links to plant genomic resources. The LAILAPS search engine allows fuzzy querying for candidate genes linked to specific traits over a loosely integrated system of indexed and interlinked genome databases. Query assistance and an evidence-based annotation system enable time-efficient and comprehensive information retrieval. An artificial neural network incorporating user feedback and behavior tracking allows relevance sorting of results. We fully describe LAILAPS's functionality and capabilities by comparing this system's performance with other widely used systems and by reporting both a validation in maize and a knowledge discovery use-case focusing on candidate genes in barley. |
doi_str_mv | 10.1093/pcp/pcu185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4301746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652428900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-a2d6130d67a352aece051b19ba0de8ae93b355418accafcd795068484b18d8413</originalsourceid><addsrcrecordid>eNqFkU9Lw0AQxRdRbK1e_ACSYxGiM9ndZONBKMU_hYCCel42m2kbSZOYTQS_vSutoicPwwzMj8fMe4ydIlwgpPyyta2vAZXcY2MUCYYpSL7PxgA8CiFROGJHzr0C-JnDIRtFUihAjMdsms0W2ezx6Sro1xS0lan7wNmSakuBI9PZdUD1qqzpmB0sTeXoZNcn7OX25nl-H2YPd4v5LAutQOxDExUxcijixHAZGbIEEnNMcwMFKUMpz7mUApWx1ixtkaQSYiWUyFEVSiCfsOutbjvkGyos1X1nKt125cZ0H7oxpf67qcu1XjXvWnDARMReYLoT6Jq3gVyvN6WzVPnXqBmcjrwNAmN_xL-opyIRqdT7OGHnW9R2jXMdLX8uQtBfKWifgt6m4OGz3z_8oN-280_KEYIf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652428900</pqid></control><display><type>article</type><title>LAILAPS: the plant science search engine</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Esch, Maria ; Chen, Jinbo ; Colmsee, Christian ; Klapperstück, Matthias ; Grafahrend-Belau, Eva ; Scholz, Uwe ; Lange, Matthias</creator><creatorcontrib>Esch, Maria ; Chen, Jinbo ; Colmsee, Christian ; Klapperstück, Matthias ; Grafahrend-Belau, Eva ; Scholz, Uwe ; Lange, Matthias</creatorcontrib><description>With the number of sequenced plant genomes growing, the number of predicted genes and functional annotations is also increasing. The association between genes and phenotypic traits is currently of great interest. Unfortunately, the information available today is widely scattered over a number of different databases. Information retrieval (IR) has become an all-encompassing bioinformatics methodology for extracting knowledge from complex, heterogeneous and distributed databases, and therefore can be a useful tool for obtaining a comprehensive view of plant genomics, from genes to traits. Here we describe LAILAPS (http://lailaps.ipk-gatersleben.de), an IR system designed to link plant genomic data in the context of phenotypic attributes for a detailed forward genetic research. LAILAPS comprises around 65 million indexed documents, encompassing >13 major life science databases with around 80 million links to plant genomic resources. The LAILAPS search engine allows fuzzy querying for candidate genes linked to specific traits over a loosely integrated system of indexed and interlinked genome databases. Query assistance and an evidence-based annotation system enable time-efficient and comprehensive information retrieval. An artificial neural network incorporating user feedback and behavior tracking allows relevance sorting of results. We fully describe LAILAPS's functionality and capabilities by comparing this system's performance with other widely used systems and by reporting both a validation in maize and a knowledge discovery use-case focusing on candidate genes in barley.</description><identifier>ISSN: 0032-0781</identifier><identifier>EISSN: 1471-9053</identifier><identifier>DOI: 10.1093/pcp/pcu185</identifier><identifier>PMID: 25480116</identifier><language>eng</language><publisher>Japan: Oxford University Press</publisher><subject>barley ; bioinformatics ; Computational Biology ; corn ; Databases, Genetic ; genes ; Genome, Plant - genetics ; genomics ; information retrieval ; neural networks ; phenotype ; Plants - genetics ; Search Engine ; Special Online Collection – Database Papers ; User-Computer Interface</subject><ispartof>Plant and cell physiology, 2015-01, Vol.56 (1), p.e8-e8</ispartof><rights>The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.</rights><rights>The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-a2d6130d67a352aece051b19ba0de8ae93b355418accafcd795068484b18d8413</citedby><cites>FETCH-LOGICAL-c411t-a2d6130d67a352aece051b19ba0de8ae93b355418accafcd795068484b18d8413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25480116$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Esch, Maria</creatorcontrib><creatorcontrib>Chen, Jinbo</creatorcontrib><creatorcontrib>Colmsee, Christian</creatorcontrib><creatorcontrib>Klapperstück, Matthias</creatorcontrib><creatorcontrib>Grafahrend-Belau, Eva</creatorcontrib><creatorcontrib>Scholz, Uwe</creatorcontrib><creatorcontrib>Lange, Matthias</creatorcontrib><title>LAILAPS: the plant science search engine</title><title>Plant and cell physiology</title><addtitle>Plant Cell Physiol</addtitle><description>With the number of sequenced plant genomes growing, the number of predicted genes and functional annotations is also increasing. The association between genes and phenotypic traits is currently of great interest. Unfortunately, the information available today is widely scattered over a number of different databases. Information retrieval (IR) has become an all-encompassing bioinformatics methodology for extracting knowledge from complex, heterogeneous and distributed databases, and therefore can be a useful tool for obtaining a comprehensive view of plant genomics, from genes to traits. Here we describe LAILAPS (http://lailaps.ipk-gatersleben.de), an IR system designed to link plant genomic data in the context of phenotypic attributes for a detailed forward genetic research. LAILAPS comprises around 65 million indexed documents, encompassing >13 major life science databases with around 80 million links to plant genomic resources. The LAILAPS search engine allows fuzzy querying for candidate genes linked to specific traits over a loosely integrated system of indexed and interlinked genome databases. Query assistance and an evidence-based annotation system enable time-efficient and comprehensive information retrieval. An artificial neural network incorporating user feedback and behavior tracking allows relevance sorting of results. We fully describe LAILAPS's functionality and capabilities by comparing this system's performance with other widely used systems and by reporting both a validation in maize and a knowledge discovery use-case focusing on candidate genes in barley.</description><subject>barley</subject><subject>bioinformatics</subject><subject>Computational Biology</subject><subject>corn</subject><subject>Databases, Genetic</subject><subject>genes</subject><subject>Genome, Plant - genetics</subject><subject>genomics</subject><subject>information retrieval</subject><subject>neural networks</subject><subject>phenotype</subject><subject>Plants - genetics</subject><subject>Search Engine</subject><subject>Special Online Collection – Database Papers</subject><subject>User-Computer Interface</subject><issn>0032-0781</issn><issn>1471-9053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9Lw0AQxRdRbK1e_ACSYxGiM9ndZONBKMU_hYCCel42m2kbSZOYTQS_vSutoicPwwzMj8fMe4ydIlwgpPyyta2vAZXcY2MUCYYpSL7PxgA8CiFROGJHzr0C-JnDIRtFUihAjMdsms0W2ezx6Sro1xS0lan7wNmSakuBI9PZdUD1qqzpmB0sTeXoZNcn7OX25nl-H2YPd4v5LAutQOxDExUxcijixHAZGbIEEnNMcwMFKUMpz7mUApWx1ixtkaQSYiWUyFEVSiCfsOutbjvkGyos1X1nKt125cZ0H7oxpf67qcu1XjXvWnDARMReYLoT6Jq3gVyvN6WzVPnXqBmcjrwNAmN_xL-opyIRqdT7OGHnW9R2jXMdLX8uQtBfKWifgt6m4OGz3z_8oN-280_KEYIf</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Esch, Maria</creator><creator>Chen, Jinbo</creator><creator>Colmsee, Christian</creator><creator>Klapperstück, Matthias</creator><creator>Grafahrend-Belau, Eva</creator><creator>Scholz, Uwe</creator><creator>Lange, Matthias</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>LAILAPS: the plant science search engine</title><author>Esch, Maria ; Chen, Jinbo ; Colmsee, Christian ; Klapperstück, Matthias ; Grafahrend-Belau, Eva ; Scholz, Uwe ; Lange, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-a2d6130d67a352aece051b19ba0de8ae93b355418accafcd795068484b18d8413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>barley</topic><topic>bioinformatics</topic><topic>Computational Biology</topic><topic>corn</topic><topic>Databases, Genetic</topic><topic>genes</topic><topic>Genome, Plant - genetics</topic><topic>genomics</topic><topic>information retrieval</topic><topic>neural networks</topic><topic>phenotype</topic><topic>Plants - genetics</topic><topic>Search Engine</topic><topic>Special Online Collection – Database Papers</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esch, Maria</creatorcontrib><creatorcontrib>Chen, Jinbo</creatorcontrib><creatorcontrib>Colmsee, Christian</creatorcontrib><creatorcontrib>Klapperstück, Matthias</creatorcontrib><creatorcontrib>Grafahrend-Belau, Eva</creatorcontrib><creatorcontrib>Scholz, Uwe</creatorcontrib><creatorcontrib>Lange, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant and cell physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esch, Maria</au><au>Chen, Jinbo</au><au>Colmsee, Christian</au><au>Klapperstück, Matthias</au><au>Grafahrend-Belau, Eva</au><au>Scholz, Uwe</au><au>Lange, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LAILAPS: the plant science search engine</atitle><jtitle>Plant and cell physiology</jtitle><addtitle>Plant Cell Physiol</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>56</volume><issue>1</issue><spage>e8</spage><epage>e8</epage><pages>e8-e8</pages><issn>0032-0781</issn><eissn>1471-9053</eissn><abstract>With the number of sequenced plant genomes growing, the number of predicted genes and functional annotations is also increasing. The association between genes and phenotypic traits is currently of great interest. Unfortunately, the information available today is widely scattered over a number of different databases. Information retrieval (IR) has become an all-encompassing bioinformatics methodology for extracting knowledge from complex, heterogeneous and distributed databases, and therefore can be a useful tool for obtaining a comprehensive view of plant genomics, from genes to traits. Here we describe LAILAPS (http://lailaps.ipk-gatersleben.de), an IR system designed to link plant genomic data in the context of phenotypic attributes for a detailed forward genetic research. LAILAPS comprises around 65 million indexed documents, encompassing >13 major life science databases with around 80 million links to plant genomic resources. The LAILAPS search engine allows fuzzy querying for candidate genes linked to specific traits over a loosely integrated system of indexed and interlinked genome databases. Query assistance and an evidence-based annotation system enable time-efficient and comprehensive information retrieval. An artificial neural network incorporating user feedback and behavior tracking allows relevance sorting of results. We fully describe LAILAPS's functionality and capabilities by comparing this system's performance with other widely used systems and by reporting both a validation in maize and a knowledge discovery use-case focusing on candidate genes in barley.</abstract><cop>Japan</cop><pub>Oxford University Press</pub><pmid>25480116</pmid><doi>10.1093/pcp/pcu185</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0781 |
ispartof | Plant and cell physiology, 2015-01, Vol.56 (1), p.e8-e8 |
issn | 0032-0781 1471-9053 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4301746 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | barley bioinformatics Computational Biology corn Databases, Genetic genes Genome, Plant - genetics genomics information retrieval neural networks phenotype Plants - genetics Search Engine Special Online Collection – Database Papers User-Computer Interface |
title | LAILAPS: the plant science search engine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LAILAPS:%20the%20plant%20science%20search%20engine&rft.jtitle=Plant%20and%20cell%20physiology&rft.au=Esch,%20Maria&rft.date=2015-01-01&rft.volume=56&rft.issue=1&rft.spage=e8&rft.epage=e8&rft.pages=e8-e8&rft.issn=0032-0781&rft.eissn=1471-9053&rft_id=info:doi/10.1093/pcp/pcu185&rft_dat=%3Cproquest_pubme%3E1652428900%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652428900&rft_id=info:pmid/25480116&rfr_iscdi=true |